Headon and Collimation Mini-workshop at Daresbury, 26 Feb. - 2 March, 2007

Goal is to reach a decision point ~ LCWS 07 – early June, 2007

Headon topics covered:

- •Electrostatic separators w/ J. Borburgh and B. Balhan from CERN
- •SC final doublet
- •Skew quad compensation of detector solenoid and modeling solenoid over QD0
- •Synchrotron radiation from extracted beam
- •Extraction line optics for energy and polarization measurements
- •Particle losses and backgrounds from dump

Half-day on collimation:

- 1. Collimation depth for different L*
- 2. Spoiler damage proposal to ATF (or ATF2)

Backup slides

ILC separator issues

CERN 1989 Separators in front of LEP L3

detector

With input from: B. Balhan

B. Goddard

Field quality 20 mm split electrodes

20 mm split electrodes at 100 mm gap, provide 1‰ field homogeneity in an area of 16 x 14 mm

Updated ILC separator specifications

The total deflection provided by separator of 252 μrad is to obtain :

- -12 mm separation at 55 m of the IP
- -7 cm at QD2A
- (1st separator electrode starts at 11.314 m from IP)

Separator parameters for	250 GeV	500 GeV	
Active length	28		m
Number of tanks	7		
Electrode length per tank	4		m
Electrode spacing	0.65		m
total installation length	32.55		m
Electrode material	titanium		
Total deflection required	252		µrad
E ₀ (at separator center)	2.25	4.50	MV/m
Split size in electrodes	50	50	mm
Gap width	100 (70-140)		mm
Max. field between electrodes	2.62	5.23	MV/m
Applied Voltage	131	262	kV
Spark rate / tank	<0.04		#/hr
Field homogeneity	1.0E-02		
in area	22 x 12		mm
Quadrupole component	0.E+00		
Sextupole component	1.60E-03		
Octupole component	0.E+00		
Decapole component	1.14E-04		
Required HV generator	300		kV
	>3		mA
# of tanks per HV generator	2/2/2/1		
Decoupling resistors	44 MΩ 1 W		tbc

The separators in the tunnel

Required R & D

• Performance under irradiation

- Evaluation of radiation in existing set-ups
- Expected dose rates and profile
- Tests with beam
- Feedthrough & insulator support design to cope with harsh environment
 - (some work by CERN on insulator treatments available)
- System performance at 5.2 MV/m and beyond
- Optimal electrodes
 - Cross section profile
 - Manufacturing techniques in case of hollow Ti
- Coupling in the event of sparking
 - Geometry effects (coupling of field, coupling via the beam / photons etc.)
 - Circuit effects (partly dealt with by increasing the number of HV generators, partly to be dealt with by a carefull study of the value of the decoupling resistors)
 - Recovery
- Impedance presented to the beam:
 - Problem to the separator (Parasitic mode damping needed?)