Radiation issues in the single tunnel environment

Mariusz Grecki for LLRF team

Agenda

- XFEL radiation environment
 - gamma
 - neutrons
- influence of radiation on electronic devices
 - TID (Total Ionizing Dose)
 - DDD (Displacement Damage Dose)
 - SEE (Single Event Effects)
- countermeasures
 - shielding
 - SEE-tolerant circuits and algorithms

Agenda

- XFEL radiation environment
 - gamma
 - neutrons
- influence of radiation on electronic devices
 - TID (Total Ionizing Dose)
 - DDD (Displacement Damage Dose)
 - SEE (Single Event Effects)
- countermeasures
 - shielding
 - SEE-tolerant circuits and algorithms

FLASH – the Pilot Project for XFEL

XFEL Tunnel Layouts

Panoramic view of the XFEL Tunnel showing the Cryomodule, Utility ducts and Electrical cable trays

Shielded Space for LLRF-Electronics

In-situ Radiation Dosimetry at FLASH Module

Gamma Dose Rate along the module tank

Neutron Fluence Rate along the module tank

Gamma Dose Measurement along FLASH during Routine Operation at a gradient of ~21 MV/m

- Accelerated dark current from RF gun is the prime source of gamma dose
- Gamma dose rate drops with the distance from the RF gun
- Gamma dose rate at the cryomodule (ACC 1) near bunch compressor (BC #1) is two orders of magnitude higher than the distant module ACC 5
- The dose distribution pattern along the module surface is non-homogeneous
- The radiation dose at modules far away for the RF gun caused by the accelerated field emission electrons

Gamma Dose Measurement along the Accelerator Module 5 at different Gradients (RF Gun off)

Gamma dose rates along ACC 5 running in field emission mode (RF gun off)

Average Gamma dose rate as a function of Gradient

Gamma Dose Rate skyrockets with the Gradient across the accelerator module

In situ Dosimetry of Neutron and Gamma Radiation Fields in FLASH Environment

Gamma dose rates along ACC 5 running in field emission mode (RF gun off)

Neutron dose (kerma) rate along ACC 5 running in Field-Emission mode

> Gamma Dose rate is 4 orders of magnitude higher than neutron kerma (Si) rate.

Radiation Induced Cryogenic Loss

The TLD (gammas) and Bubble detectors (Neutrons) were used to assess radiation doses (kerma) and then used to derive the Cryogenic Losses

Agenda

- XFEL radiation environment
 - gamma
 - neutrons
- influence of radiation on electronic devices
 - TID (Total Ionizing Dose)
 - DDD (Displacement Damage Dose)
 - SEE (Single Event Effects)
- countermeasures
 - shielding
 - SEE-tolerant circuits and algorithms

The influence of radiation on electronic devices

Photons and particles in a form of radiation can basically generate following types of effects in silicon components:

- permanent
 - ionizing effect (TID)
 - displacement damage (DDD)
- transient (SEE Single Event Effect)
 - non-destructive (SET, SEU, SEFI)
 - destructive (SEL, SEB, SEGR)

Ionization effects in MOS transistor

Degradation of MOS transistor parameters

- modification of the threshold voltage V₁
- decrease of transconductance
- increase of leakage currents
- reduction of drain-source breakdown voltage
- deterioration of noise parameters
- reduction in surface mobility
- increase of the surface recombination rate

Single Event Effects (SEE)

A parasitic thyristor structure responsible for SEL in CMOS inverter

Agenda

- XFEL radiation environment
 - gamma
 - neutrons
- influence of radiation on electronic devices
 - TID (Total Ionizing Dose)
 - DDD (Displacement Damage Dose)
 - SEE (Single Event Effects)
- countermeasures
 - shielding
 - SEE-tolerant circuits and algorithms

Monte Carlo Simulation of Shielding Concrete

(a) Input neutron spectrum (fission spectrum)

- (b) Ordinary concrete with no $B_{4}C$
- (c) Heavy concrete with 5% $B_{a}C$
- (d) Heavy concrete with 10% $B_{4}C$
- (e) Heavy concrete with 20% B_4C

Showing the integrated neutron dose equivalent on the surface of a 50 cm radius concrete shield with different amounts of B_4C

Thin Thermal Neutron Shield

SRAM No	Irradiation Mode	SEU count			
1	Am-Be (bare)	40			
2	Am-Be (water mod)	275			
3	Am-Be (water mod + B shield)	19			
4	Linac (bare)	117			
5	Linac (Polyeth. mod)	619			
<mark>6</mark>	Linac (Polyeth. mod + B shield)	<mark>15</mark>			

The normalised SEU counts of the bare, polyethylenemoderated and shielded with Borated Polyethylene

SEU tolerance

- SEU tolerant hardware (microcontroller based on PIC16C57 architecture designed and implemented)
- SEU tolerant algorithms (IQ detection designed and implemented)
- development of SEU-tolerant operating system (sCORE operating system - in progress)

Radiation-tolerant Microcontroller

SEU tolerant IQ detection algorithm

IQ detection algorithm - simulation

- Randomly generated SEUs were affecting all registers
- Almost all errors were corrected (except errors in output registers – application of error correcting codes is required)
- Only double hardware redundancy

		i							44			_	
± ‴ SI	lcb/IQC4/	05634	0	(05634	4		4	4	05634		4		
∓‴SQ	lcb/IQC4/	01622	0	(01622	5162		01622	01622				22	
± ª PCS	lcb/IQC4/	00000	0	(00000)	00000	X00000	00000	00000	XX X00000	4	<u></u> X00	000) (0000
± ª QCS	lcb/IQC4/	00000	0	(00000)	(1 0000		00000	00000) (X (X 00000	200000	<u> </u>	000)
+ • Q	lcb/IQC4/	01622	0	(01622)	01622								
+ -•	lcb/IQC4/	05634	0	(05634									

Conclusion

- In the environment of high-energy electron accelerators driving the FLASH/XFEL the Gamma rays predominate over the neutrons
- Total Ionizing Dose (TID) is the main source radiation of effects while Displacement Damage is negligible
- Real-time (on-line) gamma monitoring is imperative to optimize the module gradient in order to reduce the gamma doses, thereby lowering the TID effects to electronics
- The efficient countermeasures can be applied
 - 20 cm thick borated heavy-concrete shield reduces the gamma dose by a factor of 50 (simulation results using MCNP code, the measurements in FLASH are ongoing)
 - 6 mm thick composite material based local shield reduces the SEU probability by a factor 10⁻⁴
 - application of the hardware and software redundancy allowing detection and correction SEU driven errors