Power Requirements for RF Control

S. Simrock, DESY S. Michizono, KEK B. Chase, FNAL

RF System Architecture (Simplified)

Typical Parameters in a Pulsed System

Sources of Field Perturbations

RF Field Regulation (Simulation)

Typical in/out at 5 MW klystron

Klystron saturation en live of the 5 MW klystron TH 2104 C made by Thomson {TTF klystron). The power of the output *RF* signal is plotted versus the input RF signal. The cathode voltage is 126 kV and the current 95 A.

Additional Power as function of detuning

Detuning control <15Hz will be necessary for the 0.2%rms compensation.

Flatness of Modulator Voltage

Present KEK's bounce modulator has a flatness of 1.3 kV (1.2% pk-pk, 0.2%rms). If the amplitude overhead becomes 3%, requirements for voltage stability is 0.16%rms.

3rd ILC/XFEL Joint Meeting 23-03-07

RF Power Budget

	Voltage loss	Power loss	vailable Power (MW
High Level RF Loss Factors			
Maximum Klystron Output Power		0,0%	10,00
De-rating of klystron for end of life time		5,0%	9,50
Modulator Ripple Spec = 1% (Often worse)	1%	2,5%	9,26
Waveguide and circulator losses		8,0%	8,52
Power loss due to cavity gradient variation		2,0%	8,35
Parameter variation	1,0%	2,0%	8,18
Low Level RF Loss Factors			
Peak power headroom	1,0%	2,0%	8,02
Dynamic Headroom	2,0%	4,0%	7,70
Beam current fluctuations of 1%	2,0%	4,0%	7,40
Detuning errors of 30 Hz	1,0%	2,0%	7,25
Klystron drive noise sidebands	1,0%	2,0%	7,11
Beam Power Requirments			
Power Required for 9.5ma @ 33.5 MV/m			0,330344
Power for 26 cavities			8,59
Excess Power Headroom			(1,48)

Courtesy: Brian Chase, Shin Michizono

RF Power Budget

	Adolphsen (20061106)			Chase (20061116)		Toge (20061120)		FNAL (20061122)			MICHIZONO (20061124)				
	Voltage loss	Power loss	Available Power (MW)	Voltage loss	Power loss	Available Power (MW), when 5% derating of klys is considered	Voltage loss	Power loss	Available Power (MW), when no derating of klys is considered	Voltage loss	Power loss	Available power (MW)	Voltage loss	Power loss	Available power (MW)
Power Source and High Level RF Loss Factors															
Maximum Klystron Output Power		0,0%	10		0,0%	10,00		0,0%	10,00		0,0%	10,00		0,0%	10,00
De-rating of klystron for end of life time		0,0%	10		5.0%	9.50		0.0%	10.00		10.0%	9.00		0.0%	10.00
Modulator Ripple Spec = 1% (Often w	orse)	0,0%	10	1%	2,5%	9,26	1%	2,5%	9,75	1%	2,5%	8,78	1%	2,5%	9,75
Waveguide and circulator losses		7.0%	9.3		8,0%	8,52		10.0%	8,78		8.0%	8,07	-	8.0%	8,97
Power loss due to cavity gradient	variation	0,0%	9,3		2,3%	8,33		2,3%	8,57		2,3%	7,89		2,3%	8,76
Parameter variation		0,0%	9,3	0,5%	1,0%	8,24	0,5%	1,0%	8,49	0,5%	1,0%	7,81	0,0%	0,0%	8,76
Total HLRF Loss and Available Power		7%	9,3		18%	8,24		15%	8,49		22%	7,81		12%	8,76
Low Level RF Loss Factors															
Peak power headroom				1 0%	2.0%	8.08	1 0%	2.0%	8 32	1 0%	2 0%	7 65	2 5%	5.0%	8 33 📥
Dynamic Headroom				3.0%	5.9%	7 60	3.0%	5.9%	7.83	3 0%	5.9%	7 20	0.0%	0.0%	0,00
Beam current fluctuations of 1%pk				5700	1.0%	7 52	5700	1 0%	7 75	5700	1 0%	7 13	0,00	1 0%	
Detuning errors of 30 Hz				1 0%	2.0%	7 38	1 0%	2.0%	7 59	1 0%	2 0%	6 99	1 0%	3.0%	8. 55/8. 71
parameter variation				_,	_,	.,	_,	_,		-,	_,		-/	4.0%	
Klystron drive noise sidebands				1 0%	2.0%	7 23	1 0%	2.0%	7 44	1 0%	2 0%	6.85	0.0%	0.0%	0.00
Total LLRE Loss (linear sum) and				_,	_,	.,	-/	_,	.,	-/	_,		.,	-,	.,
Available Power		10,9%	8,29		12,3%	7,23		12,3%	7,44		12,3%	6,85			
Total LLRF (square sum) and															
Available Power		10,9%	8,29		6,7%	7,69		6,9%	7,90		6,7%	7,29		5,1%	5,19%
8-8-8 Configuration Case															
Power (kW) Required for 9.5ma @ 35 1	MV/m		0,345135			0,345135			0,345135			0,345135			0,345135
Power (MW) for 24 cavities			8,28			8,28			8,28			8,28			8,28
Simulated rf power (MW) for 24 cavi	ties														
Excess Power Headroom (when linear sum of LLRF losses assumed)			0,00			(1,05)			(0,84)			(1,44)			(0,38)
Excess Power Headroom (when square sum of LLRF losses assumed)			0,00			(0,59)			(0,38)			(1,00)			
Peak Gradient (MV/m) at 9.5mA with 24cavities, when zero power headroom is assumed for linear-sum LLRF loss			35,01			30,54			31,45			28,94			
Peak Gradient (MV/m) at 9.5mA with 24cavities, when zero power headroom is assumed for square-sum LLRF loss			35,01			32,50			33,38			30,79			
Note: Lower power per cavity -> higher Ql	and long	er fill	and decay times	3											
This requires a longer modulator pulse an	d higher	cryo loa	ding												
30 Hz detuning errors are the sum of microphonics and I	Lorentz force	e detuning.	. (Even if microphoni	ics=0, we ha	ave to comp	ensate 97% of LFD)									

Typical Power Overhead for Various Accelerators

- FLASH(TTF): 20% (in amplitude)
- XFEL: 28% (in amplitude) (5.2 MW/10 MW)
- SNS: =~25% (in amplitude)
- J-PARC (NC): >10% (in amplitude)

Prerequisites for RF Control

- 1. Need stable llrf feedback gain of at least 100 for sufficient error suppression
- 2. Feedback gain must be (almost) independent of klystron output power to
 - a. guarantee sufficient error suppression independent of klystron power
 - b. guarantee feedback loop stability independent of klystron power
- 3. Klystron phase should be (almost) independent from klystron power to
 - a. Ensure that no significant phase error are induced
 - b. Loop phase is constant to guarantee feedback stability
- Power headroom required for exception handling Example: Quench in cavity can require up to 10% extra power to maintain vector-sum
- 5. Power headroom to compensate for klystron aging or protection
- 6. The required klystron incremental gain and phase stability can be achieved by
 - a. Operation sufficiently far below saturation
 - b. Operation with klystron linearization scheme

Note: Does not work well if less than 10% from klystron saturation

Comments

- Without klystron linearization feedback gain will be lowered by factor of 3 if headroom is reduced from 10% to 3% => residual error goes up by factor of 3. Response time of feedback is 3 times longer.
 - a. Simply increasing gain is not possible since robustness of feedback loop will be sacrificed.
- 2. Feedback gain becomes extremely sensitive to rf power (function of beam loading, gradient and cavity detuning, klystron HV) =>
 - Frequent loss of regulation
 - Potential instabilities in feedback loop due to large loop gain changes
- 3. LLRF cannot react well to loss in gradient with low rf power overhead. Recovery is very slow.
- 4. Exception handling capability is severely sacrificed with low power overhead.
- 5. No gradient spread can be accepted. All cavities must operate within about 1% of same gradient. Power distribution must be very precise (about 1%) to allow for optimal use oif each cavity.

Comments (C'ntd)

- 1. Various subsystems must be extremely stable to guarantee field stability
 - a. Klystron voltage to << 1 k (i.e. desired 100) during flat-top
 - b. Beam loading to << 1 %
 - c. Lorentz force detuning must be held < 10 Hz with piezo tuner
- NOTE: With klystron linearization the linearity can be improved by about a factor of 10.
 - Unfortunately the compensation degrades rapidly close to saturation (robustness, noise). While it works well at 10% from saturation it does not at 3%.
 - Klystron linearization requires very reproducible operating parameters
 - Klystron linearization will be sacrificed by broadband noise which increases linear with 1/headroom. Noise power bands will be clipped by peamp. and klystron leading to severe signal distortion and amplitude to phase coupling

Conclusion

If the rf power headroom is reduced to 3% one dramatically increases the risk of loosing several percent in maximum energy and/or beam current capability (= luminosity) because the rf system will not operate with the required stability at the desired linac operating gradient and beam current.

In simple words: The rf system will not work (well) with an rf power overhead of 3% but it will work well with an overhead of 10-20 %.

