Second International Accelerator School for Linear Colliders

Lecture 1: Introduction and Overview

Nick Walker (DESY)

Ettore Majorana Center, Erice (Sicily), Italy

Course Content

Lecture:

- 1. Introduction and overview (Nick Walker, DESY)
- 2. Sources & bunch compressors (Masao Kuriki, KEK)
- 3. Damping Rings (Andy Wolski, CI)
- 4. Linac (Peter Tenenbaum, SLAC)
- 5. Low-Level and High-Power RF (Stefan Simrock, DESY)
- 6. Superconducting RF (Kenji Saito, KEK)
- 7. Beam Delivery System and Beam-Beam (Andrei Seryi, SLAC)
- 8. Instrumentation and Controls (Marc Ross, FNAL)
- 9. Operations (Marc Ross, FNAL)
- 10. Compact Linear Collider, CLIC (Frank Tecker, CERN)
- 11. Conventional Facilties (Atsushi Enomoto, KEK)
- 12. Physics and Detectors (Jim Brau, Univ. of Oregon)

This Lecture

- Why LC and not super-LEP?
- The Luminosity Problem
 - general scaling laws for linear colliders
- A introduction to the linear collider sub-systems and key parameters:
 - main accelerator (linac)
 - sources
 - damping rings
 - bunch compression
 - final focus

We will be fast!

But you will here it all again in detail over the next two weeks

during the lecture, we will introduce (revise) some important basic accelerator physics concepts that we will need in the remainder of the course.

Energy Frontier e⁺e⁻ Colliders

Why a Linear Collider?

Synchrotron Radiation from an electron in a magnetic field:

$$P_{\gamma} = \frac{e^2 c^2}{2\pi} C_{\gamma} E^2 B^2$$

Energy loss per turn of a machine with an average bending radius ρ:

$$\Delta E / rev = \frac{C_{\gamma} E^4}{\rho}$$

Energy loss must be replaced by RF system

Cost Scaling \$\$

- Linear Costs: (tunnel, magnets etc) $\$_{lin} \propto \rho$
- RF costs:

$$\mathcal{F}_{RF} \propto \Delta E \propto E^4/\rho$$

Optimum at

$$\$_{lin} = \$_{RF}$$

Thus optimised cost ($\$_{lin}+\$_{RF}$) scales as E^2

The Bottom Line \$\$\$

		LEP-II	Super-LEP	Hyper- LEP
E_{cm}	GeV	180	500	2000
L	km	27		
ΔE	GeV	1.5		
\$ _{tot}	10 ⁹ SF	2		

The Bottom Line \$\$\$

		LEP-II	Super-LEP	Hyper- LEP
E_{cm}	GeV	180	500	2000
L	km	27	200	
ΔE	GeV	1.5	12	
\$ _{tot}	10 ⁹ SF	2	15	

The Bottom Line \$\$\$

		LEP-II	Super-LEP	Hyper- LEP
E_{cm}	GeV	180	500	2000
L	km	27	200	3200
ΔE	GeV	1.5	12	240
\$ _{tot}	10 ⁹ SF	2	15	240

solution: Linear Collider

No Bends, but lots of RF!

- long *linac* constructed of many RF accelerating structures
- Gradient ~30 MV/m

A Possible Apparatus for Electron-Clashing Experiments (*). M. Tigner

Laboratory of Nuclear Studies. Cornell University - Ithaca, N.Y.

M. Tigner, Nuovo Cimento **37** (1965) 1228

"While the storage ring concept for providing clashingbeam experiments (¹) is very elegant in concept it seems worth-while at the present juncture to investigate other methods which, while less elegant and superficially more complex may prove more tractable."

A Little History (1988-2003)

- SLC (SLAC, 1988-98)
- NLCTA (SLAC, 1997-)
- TTF (DESY, 1994-, now FLASH)
- ATF (KEK, 1997-)
- FFTB (SLAC, 1992-1997)
- SBTF (DESY, 1994-1998)
- CLIC CTF1,2,3 (CERN, 1994-)
- ILCTA (FNAL, 2007-)
- STF (KEK, 2006-)
- ATF-II (KEK, 2007-)

Nearly ~20 Years of Linear Collider R&D

A Little History (1988-2003)

- SLC (SLAC, 1988-98)
- NLCTA (SLAC, 1997-)
- TTF (DESY, 1994-, now FLASH)
- ATF (KEK, 1997-)
- FFTB (SLAC, 1992-1997)
- SBTF (DESY, 1994-1998)
- CLIC CTF1,2,3 (CERN, 1994-)
- ILCTA (FNAL, 2007-)
- STF (KEK, 2006-)
- ATF-II (KEK, 2007-)

Nearly ~20 Years of Linear Collider R&D

ILC relevant

A Little History (1988-2003)

- SLC (SLAC, 1988-98)
- NLCTA (SLAC, 1997-)
- TTF (DESY, 1994-, now FLASH)
- ATF (KEK, 1997-)
- FFTB (SLAC, 1992-1997)
- SBTF (DESY, 1994-1998)
- CLIC CTF1,2,3 (CERN, 1994-)

Nearly ~20 Years of Linear Collider R&D

- ILCTA (FNAL, 2007-)
- STF (KEK, 2006-)
- ATF-II (KEK, 2007-)

ILC SCRF relevant

Past and Future

	SLC	ILC	
$E_{\rm cm}$	100	500 (1000)	GeV
P _{beam}	0.04	10 (20)	MW
σ* _y	500 (≈50)	3-5	nm
$\delta E/E_{\rm bs}$	0.03	~3	%
L	0.0003	~2	$10^{34} \text{ cm}^2 \text{s}^{-1}$
f generally quoted as 'proof of principle'		but we have a long way to ge	very o!

The Luminosity Issue

Collider luminosity (cm⁻² s⁻¹) is approximately given by

where:

 $N_{b} = \text{bunches / train}$ N = particles per bunch $f_{rep} = \text{repetition frequency}$ A = beam cross-section at IP $H_{D} = \text{beam-beam enhancement factor}$

For Gaussian beam distribution:

 $L = \frac{n_b N^2 f_{rep}}{4\pi \sigma_x \sigma_y} H_D$

 $L = \frac{n_b N^2 f_{rep}}{A} H_D$

The Luminosity Issue: RF Power

Introduce the centre of mass energy, E_{cm} :

$$L = \frac{\left(E_{cm}n_b N f_{rep}\right)N}{4\pi\sigma_x\sigma_y E_{cm}}H_D$$

 $n_b N f_{rep} E_{cm} = P_{beams}$

$$=\eta_{\scriptscriptstyle RF
ightarrow beam}P_{\scriptscriptstyle RF}$$

 η_{RF} is RF to beam power efficiency.

Luminosity is proportional to the RF power for a given E_{cm}

$$L = \frac{\eta_{RF} P_{RF} N}{4\pi \sigma_x \sigma_y E_{cm}} H_D$$

The Luminosity Issue: RF Power

Some rough ILC numbers:

 $E_{cm} = 500 \text{ GeV}$ $N = 2 \times 10^{10}$ $n_b = 3000$ $f_{rep} = 5 \text{ Hz}$

$$L = \frac{\eta_{RF} P_{RF} N}{4\pi \sigma_x \sigma_y E_{cm}} H_D$$

Need to include efficiencies:

RF \rightarrow beam:~ 60% (SCRF)Wall plug \rightarrow RF:~ 50%

Linac average AC power ~70 MW just to accelerate beams and <u>achieve luminosity</u>

 $P_{beams} \sim 2 \times 10 \text{ MW}$

The Luminosity Issues: storage ring vs LC

 $LEP f_{rep} = 44 \text{ kHz}$ $ILC f_{rep} = 5 \text{ Hz}$ (power limited)

 $L = \frac{\eta_{RF} P_{RF} N}{4\pi \sigma_x \sigma_y E_{cm}} H_D$

 \Rightarrow factor 8800 in *L* already lost!

Must push very hard on beam cross-section at collision:

LEP: $\sigma_x \sigma_y \approx 130 \times 6 \ \mu m^2$ ILC: $\sigma_x \sigma_y \approx 500 \times (3-5) \ nm^2$

factor of 10⁶ gain! Needed to obtain high luminosity of a few 10³⁴ cm⁻²s⁻¹

The Luminosity Issue: intense beams at IP

$$L = \frac{1}{4\pi E_{cm}} (\eta_{RF} P_{RF}) \left(\frac{1}{\sigma} \right)$$

SCRF:

- efficiency
- available power

Beam-Beam effects:

beamstrahlung

 H_{D}

- disruption
- Strong focusing
- optical aberrations
- stability issues and tolerances

The Luminosity Issue: Beam-Beam

- strong mutual focusing of beams (pinch) gives rise to luminosity enhancement H_D
- As e[±] pass through intense field of opposing beam, they radiate hard photons [beamstrahlung] and loose energy
- Interaction of *beamstrahlung* photons with intense field causes copious e⁺e⁻ pair production [background]

see lecture 7 on

beam-beam

The Luminosity Issue: Beam-Beam

see lecture 7 on beam-beam

beam-beam characterised by *Disruption* Parameter:

$$D_{x,y} = \frac{2r_e N\sigma_z}{\gamma \sigma_{x,y} (\sigma_x + \sigma_y)} \approx \frac{\sigma_z}{f_{beam}}$$

 σ_z = bunch length, $f_{beam} = focal \ length \ of \ beam-lens$

> for storage rings, $f_{beam} \gg \sigma_z$ and $D_{x,y} \ll 1$ For ILC, $D_y \approx 10$ hence $f_{heam} < \sigma_z$

Enhancement factor (typically $H_D \sim 1.5$ -2):

$$H_{Dx,y} = 1 + D_{x,y}^{1/4} \left(\frac{D_{x,y}^3}{1 + D_{x,y}^3} \right) \left[\ln\left(\sqrt{D_{x,y}} + 1\right) + 2\ln\left(\frac{0.8\beta_{x,y}}{\sigma_z}\right) \right]$$

'hour glass' effect

The Luminosity Issue: Beam-Beam

The Luminosity Issue: Hour-Glass

see lecture 7 on beam-beam

 β = "depth of focus" reasonable lower limit for β is bunch length σ_z

The Luminosity Issue: Beamstrahlung

Gives rise to

- average energy loss
- increase in RMS energy spread

in the beams.

Beamstrahlung

Most important parameter is Υ

$$\Upsilon = \frac{2}{3} \frac{\hbar \omega_c}{E} = \frac{\lambda_e \gamma^2}{\rho} = \gamma \frac{2B}{B_s} = \frac{e}{m_0^2} \sqrt{\left(F_{\mu\nu} p^{\nu}\right)^2}$$

- ω_c critical photon frequency
- λ_e Compton wavelength
- ρ local bending radius
- *B* beam magnetic field
- B_s Schwinger's critical field (= 4.4 GTesla)
- $F_{\mu\nu}$ em field tensor
- p^{ν} electron 4-momentum

The Luminosity Issue: Beamstrahlung

Example taken from the TESLA Technical Design Report

The Luminosity Issue: Beamstrahlung beam

see lecture 7 on beam-beam

RMS relative energy loss
$$\delta_{BS} \approx 0.86 \frac{er_e^2}{2m_0c^2} \left(\frac{E_{cm}}{\sigma_z}\right) \frac{N^2}{(\sigma_x + \sigma_y)^2}$$

we would like to make $\sigma_x \sigma_y \text{ small}$ to maximise luminosity BUT keep $(\sigma_x + \sigma_y)$ large to reduce δ_{SB} .

Trick: use "flat beams" with $\sigma_x \gg \sigma_y$

$$\delta_{BS} \propto \left(\frac{E_{cm}}{\sigma_z}\right) \frac{N^2}{\sigma_x^2}$$

Now we set σ_x to fix δ_{SB} , and make σ_y as small as possible to achieve high luminosity.

For ILC, $\delta_{SB} \sim 2.4\%$

The Luminosity Issue: Beamstrahlung

Returning to our *L* scaling law, and ignoring H_D

$$L \propto \frac{\eta_{RF} P_{RF}}{E_{cm}} \left(\frac{N}{\sigma_x}\right) \frac{1}{\sigma_y}$$

From flat-beam beamstrahlung

$$rac{N}{\sigma_x} \propto \sqrt{rac{\sigma_z \delta_{BS}}{E_{cm}}}$$

$$L \propto \frac{\eta_{RF} P_{RF}}{E_{cm}^{3/2}} \frac{\sqrt{\delta_{BS}} \sigma_z}{\sigma_y}$$

The Luminosity Issue: story so far

 $L \propto \frac{\eta_{RF} P_{RF}}{E_{cm}^{3/2}} \frac{\sqrt{\delta_{BS}} \sigma_z}{\sigma_y}$

For high Luminosity we need:

- high RF-beam conversion efficiency η_{RF}
- high RF power P_{RF}
- small vertical beam size σ_{v}
- large bunch length σ_{z} (will come back to this one)
- could also allow higher beamstrahlung δ_{BS} if willing to live with the consequences

Next question: how to make a small σ_v

The Luminosity Issue: A final scaling law?

$$L \propto \frac{\eta_{RF} P_{RF}}{E_{cm}^{3/2}} \frac{\sqrt{\delta_{BS} \sigma_z}}{\sigma_y} \qquad \sigma_y = \sqrt{\frac{\beta_y \varepsilon_{n,y}}{\gamma}}$$

where $\varepsilon_{n,y}$ is the normalised vertical emittance, and β_y is the vertical β -function at the IP. Substituting:

$$L \propto \frac{\eta_{RF} P_{RF}}{E_{cm}^{3/2}} \sqrt{\frac{\delta_{BS} \gamma}{\varepsilon_{n,y}}} \sqrt{\frac{\sigma_z}{\beta_y}} \propto \frac{\eta_{RF} P_{RF}}{E_{cm}} \sqrt{\frac{\delta_{BS}}{\varepsilon_{n,y}}} \sqrt{\frac{\sigma_z}{\beta_y}}$$

hour glass constraint

 β_y is the same 'depth of focus' β for hour-glass effect. Hence $\beta_y \ge \sigma_z$

The Luminosity Issue: A final scaling law?

$$\left| L \propto \frac{\eta_{RF} P_{RF}}{E_{cm}} \sqrt{\frac{\delta_{BS}}{\varepsilon_{n,y}}} H_D \right| = \beta_{y^{\approx}} \sigma_z$$

- high RF-beam conversion efficiency η_{RF}
- high RF power P_{RF}
- small normalised vertical emittance $\varepsilon_{n,v}$
- strong focusing at IP (small β_v and hence small σ_z)
- could also allow higher beamstrahlung δ_{BS} if willing to live with the consequences

Above result is for the <u>low</u> beamstrahlung regime where $\delta_{BS} \sim \text{few \%}$ Slightly different result for <u>high</u> beamstrahlung regime

Luminosity as a function of β_{v}

The 'Generic' Linear Collider

Each sub-system pushes the state-of-the-art in accelerator design

The ILC Footprint

Superconducting RF Linac Technology

"TESLA" 9-cell 1.3GHz SCRF niobium cavity

Type-III TTF cryomodule

TTF type-III cryomodule being installed at FLASH, DESY

Type-IV ILC cryomodule, containing 9 nine-cell cavities
Superconducting RF Linac Technology

Superconducting RF Linac Technology

The Linear Accelerator (LINAC)

standing wave cavity:

bunch sees field: $E_z = E_0 \sin(\omega t + \phi) \sin(kz)$ $= E_0 \sin(kz + \phi) \sin(kz)$

- only consider relativistic electrons ($v \approx c$)
- Thus there is no longitudinal dynamics (e[±] do not move long. relative to the other electrons)
- No space charge effects

RF Cavity Basics: Figures of Merit

see lectures 4 on linac

- Power lost in cavity P_{cav}
- Shunt impedance r_s

$$V_{cav}^2 \equiv r_s P_{cav}$$

$$E_z = \sqrt{P_{RF}R_s}$$

• Quality factor
$$Q_0$$
: $Q_0 \equiv 2\pi \frac{\text{stored energy}}{\text{energy lost per cycle}} = \frac{\omega_0 U_{cav}}{P_{cav}}$
• *R-over-Q* $r_s / Q_0 = \frac{V_{cav}^2}{2\omega_0 U_{cav}}$

 r_s/Q_0 is a constant for a given cavity geometry independent of surface resistance

RF Cavity Basics: Fill Time

see lectures 4 on linac

Characteristic 'charging' time:

 $\tau = \frac{2Q_0}{\omega_0}$

time required to (dis)charge cavity voltage to 1/*e* of peak value.

Often referred to as the cavity fill time.

True fill time for a <u>pulsed linac</u> is defined slightly differently as we will see.

see lectures 4 on linac

$f_{\rm RF} = 1.3 {\rm GHz}$		S.C. Nb (2K)	Cu
Q_0		5×10 ⁹	2×10 ⁴
R/Q			1 kΩ
<i>R</i> ₀		5×10 ¹² Ω	2×10 ⁷ Ω
P_{cav} (5 MV)	cw!	5 W	1.25 MW
<i>P_{cav}</i> (30 MV)	cw!	180 W	45 MW
$ au_{fill}$		1.2 s	5 µs

see lectures 4 on linac

$f_{\rm RF} = 1.3 \rm GHz$		S.C. Nb (2K)	Cu
Q_0		5×10 ⁹	2×10 ⁴
R/Q			1 kΩ
R_0		$(5 \times 10^{12} \Omega)$	2×10 ⁷ Ω
P_{cav} (5 MV)	cw!	5 W	1.25 MW
<i>P_{cav}</i> (30 MV)	cw!	180 W	Very high Q_0 :
$ au_{fill}$		1.2 s	the great advantage of
			s.c. RF

$f_{\rm RF} = 1.3 \text{ GHz}$	S.C. Nb (2K)	Cu		
Q_0	• for high-energy higher gradient linacs (X-FEL, ILC), <i>cw</i> operation not an option			
R/Q	due to load on cryogenics • pulsed operation generally required			
<i>R</i> ₀	 numbers now represent peak power D = D × duty quale 			
P_{cav} (5 MV)	 <i>P_{cav} - P_{pk}×duty cycle</i> (Cu linacs generally use <u>very</u> short pulses!) 			
<i>P</i> _{av} (30 MV)	<i>cw!</i> (125 W)	31 MW		
$ au_{fill}$	1.2 s	5 µs		

$f_{\rm RF} = 1.3 {\rm GHz}$	S.C. Nb (2K)	Cu	
Q_0	5×10 ⁹	2×10 ⁴	
R/Q	1 kΩ		
<i>R</i> ₀	 High Q of cavity requires very long charging time!! OK for <i>cw</i> operation, but clearly doesn't work for pulsed lines like U C 		
P_{cav} (5 MV)			
<i>P_{cav}</i> (30 MV)	work for pursed finales i		
$ au_{fill}$	1.2 s	5 µs	

RF Cavity Basics: Power Coupling

- calculated 'fill time' was 1.2 seconds!
- this is time needed for field to decay to V/e for a closed cavity (i.e. only power loss to s.c. walls).
- however, we need a 'hole' (*coupler*) in the cavity to get the power in, and
- this hole allows the energy *in* the cavity to leak out (⇒ reflected power)
- Effectively reduces Q of cavity seen by generator, and shortens fill-time

P_{out}

 $V(t) = V_{\max} \left[1 - \exp(-\omega_0 t / 2Q_L) \right]$ $Q_L \approx Q_0 / \beta$

External generator (klystron) power Power lost in cavity walls

RF Cavity Basics: Power Coupling

Pulsed Operation

see lectures 4 on linac

- After t_{fill} , beam is • introduced
- exponentials cancel and beam sees constant accelerating voltage $V_{acc} = 25 \text{ MV}$
- Power is reflected ٠ before and after pulse

Pulsed RF→Beam Efficiency

$$\eta = \frac{t_{\text{beam}}}{t_{\text{RF}}} = \frac{t_{\text{beam}}}{t_{\text{fill}} + t_{\text{beam}}}$$
$$V_{\text{max}} = 2V_{acc}$$

 $t_{\rm fill} = \ln(2)\tau_{\rm fill}$

ILC RF Parameters (putting it all together)

- # bunches n_b
- bunch spacing $t_b = 370 \text{ ns}$
- 1 beam
- Acc. voltage/cav $V_{acc} = 31.5 \text{ MV}$
- Beam power/cav
- # cavities per klystron = 26
- P_{klvs}

• bunch charge N = $2 \times 10^{10}e = 3.2 \text{ nC}$

- = 2625

 - $= 3.2 \text{nC} / 370 \text{ns} \approx 9 \text{ mA}$
- beam pulse length $= 2625 \times 370$ ns = 970 µs

 - $= 9 \text{mA} \times 31.5 \text{ MV} = 284 \text{ kW}$
 - $= 26 \times 284 \text{ kW} = 7.4 \text{ MW}$
 - ΔE per klystron = 26 × 31.5 MeV = 820 MeV
- # klystrons / linac = (250-5) GeV / 820 MeV ≈ 300

ILC RF Parameters (putting it all together)

- Q_0
- r/Q
- •
- Q_L
- •
- cav. fill time
- •

- $= 5 \times 10^9$
- $= 1 \mathrm{k}\Omega$
- Coupler coeff. β = (9mA / 31.5MV) × 1k Ω ×(5×10⁹) = 1429
 - $= 5 \times 10^9 / 1429 = 3.5 \times 10^6$
- cav. time const. $\tau_{fill} = 2 \times (3.5 \times 10^6) / (2\pi \times 1.3 \text{GHz}) = 857 \text{ } \mu\text{s}$
 - $= \ln(2) \times 857 \ \mu s = 594 \ \mu s$
- RF pulse length $= 594 \ \mu s + 970 \ \mu s = 1.45 \ ms$
 - RF \rightarrow beam Efficiency = 970 µs / 1.45 ms = 59%
- Cavity wall (cryo) losses = 284 kW / 1429 = 200 W (peak) •
- •

Average cryo losses $\approx 7800 \times 200 \text{W} \times (1 \text{ms} \times 5 \text{Hz}) = 7.8 \text{ kW}$

typical cryoplant efficiencies $\sim 0.1\%$

LINAC beam dynamics: Transverse Wakes - The Emittance Killer!

 $V(\omega, t) = I(\omega, t)Z(\omega, t)$

Bunch current also generates transverse deflecting modes when bunches are not on cavity axis

Fields build up resonantly: latter bunches are kicked transversely

 \Rightarrow multi- and single-bunch beam breakup (MBBU, SBBU)

Transverse HOMs

wake is sum over modes: $W_{\perp}(t) = \sum_{n} \frac{2k_n c}{\omega_n} e^{-\omega_n t/2Q_n} \sin(\omega_n t)$

 k_n is the *loss parameter* (units *V/pC/m²*) for the *n*th mode Transverse kick of *j*th bunch after traversing one cavity:

$$\Delta y'_{j} = \sum_{i=1}^{j-1} \frac{y_{i}q_{i}}{E_{i}} \frac{2k_{i}c}{\omega_{n}} e^{-\omega_{n}i\Delta t/2Q_{n}} \sin\left(\omega_{i}i\Delta t_{b}\right)$$

where y_i , q_i , and E_{i} , are the offset *wrt* the cavity axis, the charge and the energy of the *i*th bunch respectively.

Detuning

HOMs cane be randomly detuned by a small amount.

Over several cavities, wake 'decoheres'.

Effect of random 0.1% detuning (averaged over 36 cavities).

Still require HOM dampers

Effect of Emittance

vertical beam offset along bunch train $(n_b = 2920)$

Multibunch emittance growth for cavities with 500µm RMS misalignment

Wakefields (alignment tolerances)

 $\delta Y_{\rm RMS} \propto \frac{1}{NW_{\perp}} \sqrt{\frac{E_z}{\beta}}$ $\propto \frac{f^{-3}}{N} \sqrt{\frac{E_z}{\beta}}$

higher frequency = stronger wakefields
-higher gradients
-stronger focusing (smaller β)
-smaller bunch charge

Wakefields and Beam Dynamics

The preservation of (RMS) Emittance!

The LINAC is only one part

- Need to understand how to:
- Produce the electron charge?
- Produce the positron charge?
- Make small emittance beams?
- Focus the beams down to ~nm at the IP?

e^+e^- Sources

Requirements:

- produce long bunch trains of high charge bunches
- with small emittances
- and *spin* polarisation (needed for physics)

2625 @ 5 Hz few nC

 $\varepsilon_{nx,y} \sim 10^{-6}, 10^{-8} \text{ m}$

mandatory for e^- , nice for e^+

Remember *L* scaling: $L \propto \frac{n_b N^2}{\sqrt{\mathcal{E}_n}}$

e⁻ Source: DC Gun

see lectures 2 on sources

- laser-driven photo injector
- circ. polarised photons on GaAs cathode
 → long. polarised e⁻
- laser pulse modulated to give required time structure
- very high vacuum requirements for GaAs (<10⁻¹¹ mbar)
- beam quality is dominated by <u>space charge</u> (note v ~ 0.2c)

 $\varepsilon_n \approx 10^{-5} m$

factor 10 in *x* plane factor ~500 in *y* plane

e^{-} Source: pre-acceleration

see lectures 2 on sources

SHB = sub-harmonic buncher. Typical bunch length from gun is ~ns (too long for electron linac with $f \sim 1.3$ GHz, need tens of ps)

High-brightness RF guns as used in light sources would be significantly better, but vacuum conditions are generally to poor for polarised gun (cathodes)

SC RF is an option – but remains an R&D project

Making a 9mA e⁺ beam is a major challenge for the ILC

Photon conversion to e^{\pm} pairs in target material

Standard method is *e*⁻ beam on 'thick' target (EM-shower)

Damping Rings

see lecture 3 on Damping Rings

- (storage) ring in which the bunch train is stored for $T_{store} \sim 200 \text{ ms} (5 \text{Hz rep. rate})$
- emittances are reduced via the interplay of synchrotron radiation and RF acceleration

~15 *e*-foldings are required to damp the positron beam ($e^{-15} \sim 1.7 \times 10^{-7}$)

 $\Rightarrow \tau_D \sim 25 \text{ ms}$

Damping Rings: transverse damping

see lecture 3 on Damping Rings

y' not changed by photon (*or is it?*)

 δp replaced by RF such that $\Delta p_z = \delta p$.

since (adiabatic damping again)

 $y' = dy/ds = p_y/p_z,$

we have a reduction in amplitude:

 $\delta y' = -\delta p y'$

Must take average over all β -phases:

$$\tau_D \approx \frac{2E}{\langle P_{\gamma} \rangle} \quad \text{where} \quad \langle P_{\gamma} \rangle = \frac{c C_{\gamma}}{2\pi} \frac{E^4}{\rho^2} \quad \text{and hence} \quad \left| \tau_D \propto \frac{\rho^2}{E^2} \right|^2$$

LEP: $E \sim 90 \text{ GeV}$, $P_{\gamma} \sim 15000 \text{ GeV/s}$, $\tau_D \sim 12 \text{ ms}$

Equilibrium achieved when

 $\frac{d\varepsilon_x}{dt} = 0 = Q - \frac{2}{\tau_d}\varepsilon_d$

Damping Rings: transverse damping

see lecture 3 on Damping Rings

 $au_D \propto \frac{\rho^2}{E^3}$ suggests high-energy and small ring. But

required RF power: $P_{RF} \propto \frac{E^4}{\rho^2} \times n_b N$

equilibrium emittance: $\varepsilon_{n,x} \propto \frac{E^2}{\rho}$

Approximate ILC numbers:

- Take E = 5 GeV
- $\rho \approx 1000 \text{ m} \Rightarrow B_{bend} = 0.017 \text{ T}$
- $<\!P_{\gamma}\!> = 2.6 \text{ GeV/s} [55 \text{ kV/turn}]$
- hence $\tau_D \approx 4 \text{ s} 25 \text{ ms required}!!!$ Increase $\langle P_{\gamma} \rangle$ by $\times 80$ using *wiggler magnets*

Remember: $8 \times \tau_D$ needed to reduce e^+ vertical emittance.

Store time set by f_{rep} :

$$t_s \approx n_{train} / f_{rep}$$

radius:

$$\rho = \frac{n_{train} n_b \Delta t_b c}{2\pi}$$

ILC Damping Ring

Damping dominated by wiggler insertions

Damping Rings: limits on vertical emittance

- Horizontal emittance defined by magnet lattice
- theoretical vertical emittance limited by
 - space charge
 - intra-beam scattering (IBS)
 - photon opening angle
- In practice, ε_y limited by magnet alignment errors
 [cross plane coupling, dispersion]
- typical vertical alignment tolerance: $\Delta y \approx 30 \ \mu m$ \Rightarrow requires beam-based alignment techniques!

see lecture 3 on Damping Rings

Bunch Compression

see lecture 2 on Bunch Compression

- bunch length from Damping Ring ~ 9 mm
- required at IP 200-300 μm

The linear bunch compressor

initial (uncorrelated) momentum spread: initial bunch length compression ratio beam energy RF induced (correlated) momentum spread: RF voltage RF wavelength longitudinal dispersion:

 δ_{u} $\sigma_{z,0}$ $F_{c} = \sigma_{z,0} / \sigma_{z}$ E δ_{c} V_{RF} $\lambda_{RF} = 2\pi / k_{RF}$ R_{56}

conservation of longitudinal emittance (*nb* valid for $F_c >>1$)

 $\delta_c \approx \delta_u F_c$

RF cavity

$$\delta_{c} \approx \frac{k_{RF}V_{RF}\sigma_{z,0}}{E} \Leftrightarrow V_{RF} \approx \frac{E\delta_{c}}{k_{RF}\sigma_{z,0}} \approx \frac{E}{k_{RF}} \left(\frac{\delta_{u}}{\sigma_{z,0}}\right) F_{c}$$

see lecture 2
The linear bunch compressor

chicane (dispersive section)

$$\Delta z \approx R_{56} \delta \qquad R_{56} = -\frac{\langle \delta z \rangle}{\delta^2} = -\frac{\delta_c \sigma_{z,0}}{F^2 \delta_u^2} = \frac{k_{RF} V_{RF}}{E} \left(\frac{\sigma_{z,0}}{\delta_u}\right)^2 \frac{1}{F^2}$$

$$\sigma_{z,0} = 9 \,\mathrm{mm}$$

$$\delta_u = 0.13\%$$

$$\sigma_z = 300\,\mu\mathrm{m} \Rightarrow F_c = 30$$

$$f_{RF} = 1.3 \,\mathrm{GHz} \Rightarrow k_{RF} = 27.2 \,\mathrm{m}^{-1}$$

$$E = 5 \,\mathrm{GeV}$$

$$k_{RF} \approx 800 \,\mathrm{MV}$$

$$k_{RF} \approx 800 \,\mathrm{MV}$$

Large resulting energy spread (4%) may cause beam dynamics problems in Main Linac: solution -2 stage compressor with acceleration.

see lecture 2

Final Focusing

Use telescope optics to demagnify beam by factor $m = f_1/f_2 = f_1/L^*$

Need typically m = 300putting $L^* = 2m \Rightarrow f_1 = 600m$

Final Focusing

 $L^* \approx 2 - 4 \text{ m}$ $\sigma_y = \sqrt{\varepsilon_{n,y} \beta_y / \gamma}$ $\sigma_y \approx 3 - 5 \text{ nm} \Rightarrow \beta_y \approx 200 - 300 \text{ }\mu\text{m}$ remember $\beta_y \sim \sigma_z$ at final lens $\beta_y \sim 100 \text{ }\text{km}$

short *f* requires very strong fields (gradient): $dB/dr \sim 250$ T/m pole tip field $B(r = 1 \text{ cm}) \sim 2.5$ T

normalised quadrupole strength: $K_1 = \frac{1}{B\rho} \frac{B_o}{r_0}$

where $B\rho = magnetic \ rigidity = P/e \sim 3.3356 \ P \ [GeV/c]$

see lecture 7

Final Focusing: chromaticity

see lecture 7

chromaticity must be corrected using sextupole magnets

Final Focusing: chromatic correction

magnetic multipole expansion:

$$B_{y}(x) = B\rho \left(\frac{1}{\rho} + K_{1}x + \frac{1}{2}K_{2}x^{2} + \frac{1}{3!}K_{3}x^{3}\dots\right)$$

dipole quadrupole sextupole octupole

2nd-order kick:
$$\Delta y' = \begin{cases} -k_1 y \delta & \text{quadrupole} \\ -k_2 x y & \text{sextupole} \end{cases}$$

introduce horizontal dispersion D_x

$$x \to x + D_x \delta$$
$$\Delta y' = -k_2 x y - k_2 D_x y \delta$$
$$\underset{geometric}{\underbrace{k_2 D_x y \delta}}$$

 $k_2 = -\frac{D_x}{k_1}$

chromatic correction when

see lecture 7

 $k_n \equiv \int_0^l K_n ds$

Final Focusing: chromatic correction

IP dipole D_x sextupoles 0 0 m 0 FD $\leftarrow L^*$ **R** = 0 0 0 1/m

see lecture 7

Final Focusing: Fundamental limits

Already mentioned that $\beta_{y} \ge \sigma_{z}$

At high-energies, additional limits set by so-called *Oide Effect*: synchrotron radiation in the final focusing quadrupoles leads to a beamsize growth at the IP

minimum beam size:
$$\sigma \approx 1.83 (r_e \lambda_e F)^{\frac{1}{7}} \varepsilon_n^{\frac{5}{7}}$$

occurs when $\beta \approx 2.39 (r_e \lambda_e F)^{\frac{2}{7}} \varepsilon_n^{\frac{3}{7}}$

independent of E!

F is a function of the focusing optics: typically $F \sim 7$ (minimum value ~0.1)

Stability

- Tiny (emittance) beams
- Tight component tolerances
 - Field quality
 - Alignment
- Vibration and Ground Motion issues
- Active stabilisation
- Feedback systems

Linear Collider will be "Fly By Wire"

Stability: some numbers

- Cavity alignment (RMS): $\sim 500 \ \mu m$
- Linac magnets:
- FFS magnets:
- Final "lens":

~ 500 µm ~100 nm 10-100 nm ~ nm !!!

parallel-to-point focusing:

LINAC quadrupole stability

$$y^{*} = \sum_{i=1}^{N_{Q}} k_{Q,i} \Delta Y_{i} g_{i} = k_{Q} \sum_{i=1}^{N_{Q}} \Delta Y_{i} g_{i}$$
$$g_{i} = \sqrt{\frac{\gamma_{i}}{\gamma^{*}}} \sqrt{\beta_{i} \beta^{*}} \sin(\Delta \phi_{i})$$

for uncorrelated offsets

$$\left\langle y^{*2} \right\rangle = \frac{\beta^* \left\langle \Delta Y^2 \right\rangle}{\gamma^*} \sum_{i=1}^{N_Q} \gamma_i k_{Q,i}^2 \beta_i \sin^2(\Delta \phi_{ij})$$

Dividing by $\sigma_y^{*2} = \beta^* \varepsilon_{y,n} / \gamma^*$ and taking average values:

$$\frac{\left\langle y_{j}^{2}\right\rangle}{\sigma_{y}^{*2}} \approx \frac{N_{Q}k_{Q}^{2}\overline{\beta}\,\overline{\gamma}}{2\varepsilon_{y,n}}\sigma_{\Delta Y}^{2} \leq 0.3^{2}$$

take $N_o = 400$, $\varepsilon_v \sim 6 \times 10^{-14}$ m, $\beta \sim 100$ m, $k_1 \sim 0.03$ m⁻¹ $\Rightarrow \sim 25$ nm

Beam-Beam orbit feedback

use strong beambeam kick to keep beams colliding Generally, orbit control (feedback) will be used extensively in LC

Beam based feedback: bandwidth

Good rule of thumb: attenuate noise with $f < f_{rep}/20$

Ground motion spectra

Long Term Stability

understanding of ground motion and vibration spectrum important

Here Endeth the First Lecture

Basic Optics 1: Phase Space and Emittance

Electron optics analogous to light optics (quadrupole magnets instead of lenses)

Basic Optics 1: Phase Space and Emittance

particle trajectories map out an area in the phase plane. Integral over y-y' space is the *emittance*, which is a constant

Basic Optics 2: RMS Emittance

Take statistical 2nd-order moments of phase space coordinates

$$\begin{pmatrix} \langle y^2 \rangle & \langle yy' \rangle \\ \langle yy' \rangle & \langle y'^2 \rangle \end{pmatrix} = \begin{pmatrix} \beta_y & -\alpha_y \\ -\alpha_y & (1 + \alpha_y^2) / \beta_y \end{pmatrix} \varepsilon$$

$$\det = \varepsilon_y^2 \qquad \det = 1$$

$$\det = \varepsilon_y^2 \qquad \det = 1$$

$$\det = \varepsilon_y^2 = \sqrt{\langle y^2 \rangle \langle y'^2 \rangle - \langle yy' \rangle^2}$$

 $\frac{(1+\alpha_y^2)}{\beta_y}y^2 + 2\alpha_y yy' + \beta_y y'^2 = \varepsilon_y$

equation of an ellipse which bounds one standard deviation of the bivariate distribution

RMS emittance is conserved by linear optics.

Basic Optics 3: Phase Advance

The parameters $\beta = \beta(s)$ and $\alpha = \alpha(s)$ are functions of the magnetic lattice (optics). *s* is the distance along the system (magnetic axis).

At any point $s=s_1$, we can transform the phase space <u>ellipse</u> into a <u>circle</u> (*floquet transformation*)

 $y(s) = a_y \sqrt{\beta_y(s)} \cos(\phi_y(s) + \phi_y(0))$ 'betatron' oscillation

Basic Optics 4: Emittance and Acceleration

high-energy (relativistic) optics is based on very small angle approximations.

Hence we assume $p_z \gg p_y$ and thus

 $p_{z} \approx |\mathbf{P}|$ $y' = \frac{dy}{dz} \approx \frac{p_{y}}{p_{z}} \approx \frac{p_{y}}{|\mathbf{P}|}$

hence for ultra-relativistic beams $y' \propto \frac{1}{\gamma} \qquad \gamma = E/m$

 $\gamma y' = const.$ $\Rightarrow \gamma \varepsilon_y = const. \equiv \underline{normalised} \ emittance$