Welcome to the 2nd LC School!

W. Chou (Fermilab, USA)

Why You are Here

• This is a wonderland

- But you are not here for vacation
- It is an ideal place for a school

• Linear Collider needs you

- Linear Collider is the future of the world high-energy physics (HEP)
- If we want to have a future, we must train a young generation now

• You said you want to work on it

Your supervisor said you are <u>very</u> good

How You Were Selected

- The school received 243 applications from 31 countries
- Due to limited resources, only 69 students from 18 countries were accepted (several couldn't come due to personal reasons). In average only 1 out of 3 was admitted.
- Admission was "need blind" no student should be turned away just because he/she can't afford it
- The committee members read every CV and recommendation letter before they made the decision if one should be selected or rejected

Program

Daily Schedule

Breakfast	08:00 - 09:00
Morning	09:00 – 12:30, including ¹ / ₂ -hour break (San Domenico)
Lunch	12:30 - 14:30
Afternoon	14:30 – 18:00, including ¹ / ₂ -hour break (San Domenico)
Tutorial & homework	18:30 – 21:00 (San Francesco)
Dinner	21:00 -

List of Courses

	Morning	Afternoon	Evening
October 1		Arrival, registration	Reception
October 2	Introduction	Sources & bunch	Tutorial & homework
		compressors	
October 3	Damping ring I	Linac I	Tutorial & homework
October 4	Damping ring II	Linac II	Tutorial & homework
October 5	LLRF & high power RF	Excursion	Tutorial & homework
October 6	Superconducting RF I	Beam delivery & beam-beam	Tutorial & homework
October 7	Superconducting RF II	Instrumentation & control I	Tutorial & homework
October 8	Instrumentation & control II;	CLIC	Tutorial & homework
	Operations		
October 9	Final exam	Conventional facilities;	Banquet
		Physics & detectors	Student Award Ceremony
October 10	Departure		

Program (cont...)

	Tuesday, October 2	Wednesday, October 3	Thursday, October 4	Friday, October 5
Morning 09:00 – 12:30	Opening remarks (10) Lecture 1 – Introduction (180) Nick Walker (DESY) • Why LC • What's ILC • Layout of ILC • Parameter choices & optimization • Overview of accelerator issues	 Lecture 3 – Damping ring I (180) Andy Wolski (Univ. of Liverpool) Role of damping rings High-level overview of structure, and principles of operation Review of basic linear beam dynamics Damping ring lattice Radiation damping (derivation of damping times, and the need for a damping wiggler in LC damping rings) Quantum excitation and equilibrium beam emittances 	 Lecture 3 – Damping ring II (180) Andy Wolski (Univ. of Liverpool) Brief overview of technical systems R&D challenges for selected technical components > injection/extraction kickers > damping wiggler Brief overview of beam dynamics issues Selected beam dynamics issues > Selected beam dynamics issues > impedance effects > electron cloud effects 	Lecture 5 – LLRF & high power RF (180) Stefan Simrock (DESY) • RF system overview • LLRF • Timing and synchronization • Modulators • Klystrons • RF distribution
Afternoon 14:30 – 18:00	Lecture 2 – Sources & bunch compressors (180) Masao Kuriki (KEK) • e- gun • e+ sources • Polarized sources • Bunch compressors • Spin rotator	Lecture 4 – Linac I (180) Peter Tenenbaum (SLAC) • Tutorials of linac basics • Standing wave linacs and structures • SRF parameter constraints • Beam loading and coupling • Lorentz force detuning	Lecture 4 – Linac II (180) Peter Tenenbaum (SLAC) • Linac lattice • Emittance preservation • RF field stability • Wakefield and dampers • HOMs • Alignment issues • Vibration issues • Beam based alignment	Excursion to Segesta (Bus leaving Porta Trapani at 14:00)
Evening 18:30 – 21:00	Tutorial & homework	Tutorial & homework	Tutorial & homework	Tutorial & homework

Program (cont...)

	Saturday, October 6	Sunday, October 7	Monday, October 8	Tuesday, October 9
Morning 09:00 – 12:30	Lecture 6 – Superconducting RF I (180) Kenji Saito (KEK) • Superconductivity basics • SRF specifics and constraints • Cavity design • Cryogenics • ILC cryomodules	Lecture 6 – Superconducting RF II (180) Kenji Saito (KEK) • Material issues • Cavity fabrication and tuning • Surface preparation • Gradient limit and spread • Power Coupler • HOM Couplers • Slow and fast tuner • ILC design	Lecture 8 – Instrumentation & control II (90) Marc Ross (Fermilab) • Electronics • Data processing Lecture 9 – Operations (90) Marc Ross (Fermilab) • Reliability • Availability • Remote control and global network	08:00 – 12:30 Final exam (270)
Afternoon 14:30 – 18:00	Lecture 7 – Beam delivery & beam- beam (180) Andrei Seryi (SLAC) • Overview • Beam-beam interaction and crossing angle • Collimation • Accelerator-detector interface, shielding and beam dump • Background and detector protection • Beam monitoring and control at final focus	Lecture 8 – – Instrumentation & control I (180) Marc Ross (Fermilab) • Beam monitoring • Precision instrumentation • Feedback systems • Energy stability • Orbit control	Lecture 10 – CLIC (90) Frank Tecker (CERN) • Room temperature RF cavities • CLIC design • Differences between CLIC and ILC • Challenges to CLIC Study time (90)	Lecture 11 – Conventional facilities (90) Atsushi Enomoto (KEK) • Overview • Tunneling • Site requirement Lecture 12 – Physics & detectors (90) Jim Brau (Univ. of Oregon) • Tera scale physics • Physics beyond 1 TeV • ILC vs. LHC • Detectors
Evening 18:30 – 21:00	Tutorial & homework	Tutorial & homework	Tutorial & homework	19:00 Banquet at Restaurant Elimo Student Award Ceremony

Lectures, Homework and Exam

- All lectures are in seminar style, no text books.
- Latest version of the lectures is available on the web.
- There are homework assignments. But they will not be graded.
- Each lecturer will be available for one evening during the tutorial and homework time.
- There will be a final exam on Oct 9. Some of the exam problems are similar to those in the homework, some are new.
- Based on the exam grade, the curriculum committee will select top 10 students and have an award ceremony on October 9.

8 Characteristics of a Good School

- 1. High expectations for every student
 - Learn as much as you can
 - Make as many new friends as you can
 (Will randomly organized small study groups help?)
- 2. Community support
- 3. A rigorous curriculum and fair assessments
- 4. Sufficient resources to help all students achieve
- 5. Safe, healthy and supportive learning environments
- 6. Classrooms equipped for teaching and learning
- 7. Qualified teachers in classrooms
- 8. Strong school leadership