

Positron Source for Linear Colliders KURIKI Masao (Hiroshima/KEK)

İİL

Summary

Positron Generation

► Positron Capture

► Positron Source

ILC Positron Sources

Summary

Positron Source Masao Kuriki (Hiroshima/KEK) 1-10 October 2007 2nd International Accelerator School for Linear Colliders at Erice, Italy

Contents

What is Positron?

3

Positron Generation Positron Capture Positron Source ILC Positron Source

- 1928: Dirac equation suggested electrons with negative energy. Hole hypothesis: "vacuum" is filled with this negative energy electrons to prohibit Klein's paradox. "hole" in the see of this electrons, acts as positrons.
- 1932: Anderson discovered positrons in cosmic rays with cloud chamber.
- In the modern field theory, positrons is considered to be electrons, which propagate inversely.

Positron Source Masao Kuriki (Hiroshima/KEK)

Positron Production (1)

- There is only few positrons in nature.
- Two ways to produce positrons :
 - Create radio-active elements,
 which beta + decays;
 - p ->n e+ neutrino.
 - Pair-creation ; gamma -> e+ e-
- All of the positron beam sources, employ the pair-creation process, which overcomes Compton scattering above 10 MeV region. Photon energy must be more than 10 MeV.

Positron Source Masao Kuriki (Hiroshima/KEK)

Positron

Generation

Positron

Capture

Positron

Source

ILC Positron

Source

Summary

Positron Production (2)

- Pair-Creation is the only process, which generates positron with a time structure.
- More than 10MeV gamma ray is required for this process.
 - EM shower induced by injecting electron beam into a heavy material. (Electron Driven scheme)
 - High energy gamma is directly produced by
 - Undulator
 - Compton back scattering.

EM Shower Regime

Positron Generation Positron Capture Positron Source ILC Positron Source Summary

- Electron energy becomes 1/e by passing one radiation length, X₀. The lost energy is shared by the shower particles.
- EM shower is mixture of e-, e+ and gamma.
- # of particles is increased by developing the EM shower and decreased by absorption with the target. # of particle is peaked at the shower max. The shower max is a function of the initial energy; 3 5 X₀ for several GeV.
- Positron beam is obtained by extracting it from the mixed flux.

Non Shower Regime

Positron Generation Positron Capture Positron Source ILC Positron Source Summary

- Principally, high energy photon can be a replacement of the high energy electron, but such high-energy photon is hard to obtain from undulator or Compton scattering (10 - 60 MeV).
- In such energy region, EM shower is not grown and photons directly generate positrons through pair creation process.
- Due to this simplicity, if the photons are polarized, the positrons are also polarized. (Polarized Positron)

Positron Capture (1)

Positron Generation Positron Capture Positron Source ILC Positron Source Summary

- Positrons are generated as a mixture of positrons, electrons, and gammas in a large area of phase space.
- ► To form the positron beam, we have to
 - Select only positrons from the flux.
 - Capture the positron in a RF bucket.
- The generated positrons are distributed in a small spot size and in a large momentum space.
- This divergent beam has to be converted into a parallel beam to fit the accelerator acceptance.
- There are two devices:
 - QWT (Quarter Wave Transformer)
 - AMD (Adiabatic Matching Device)

QWT consists from initial strong solenoid field, Bi, and weak solenoid field, Bf, along z direction.

QWT(1)

- It has a good acceptance for a specific energy (longitudinal momentum, pz), which is determined with BiLi.
- It transforms 90° in the phase space, that is why it is called as Quarter Wave Transformer.

QWT(2)

Positron Generation

> Positron Capture

Positron Source

ILC Positron Source

Summary

► Positrons at (r,z)=(0,0) circulates with radius $\rho = \frac{p_t}{eB_i}$ in r- ϕ plane.

• If a positron travels L_i in z and $\pi\rho$ (180°) in r- ϕ , the momentum satisfy,

$$p_z = \frac{eB_i L_i}{\pi} \quad \frac{L_i}{\pi \rho} = \frac{p_z}{p_t}$$

The positron is kicked at the boundary of Bi and Bf and the transverse momentum becomes,

$$p_t \to p_t \frac{B_f}{B_i}$$

The orbit radius in B_f area is $\rho_f = \frac{p_t}{eB_f} \frac{B_f}{B_i} = \frac{p_t}{eB_i}, \text{ which is same as } \rho.$

Positron Source Masao Kuriki (Hiroshima/KEK)

QWT(3)

Positron Generation Positron Capture Positron Source ILC Positron Source Summary

- The only positrons, which satisfy $p_z = eB_i L_i / \pi$, continue the circulation with a common radius, ρ in QWT.
- Those positrons are captured by the accelerating field, which is placed in Bf area.
- Orbit of off momentum positron is not a circle. They will be lost by hitting the wall.
- Acceptance - Energy : $\frac{\delta E}{E} \sim \frac{B_f}{B_i}$
 - Transverse momentum:
 iris radius.

$$p_t < \frac{eB_i a}{2}$$
 , where a is

Positron Source Masao Kuriki (Hiroshima/KEK)

AMD(1)

Positron Generation Positron Capture Positron Source ILC Positron Source

- AMD consists from the initial strong solenoid field along z direction, B_i, which is decreased down to B_f continuously.
- AMD has relatively large energy acceptance.
- Positrons, which start at r=0 with pt(0), perform helical motion with radius increasing along z.

Positron Source Masao Kuriki (Hiroshima/KEK)

Positron Source Masao Kuriki (Hiroshima/KEK) 1-10 October 2007 2nd International Accelerator School for Linear Colliders at Erice, Italy 13

х

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

AMD(3)

 \blacktriangleright 2 $\rho_{\rm f}$ has to be within aperture, a. Then, the transverse momentum has to be

$$p_t < \frac{a}{2} e \sqrt{B_f B_i}$$

► If the longitudinal momentum is too large, the variation of the solenoid field, B(z), becomes too fast to break the adiabatic condition. $p_z < 0.5 \frac{eB_i}{u}$

► These conditions give *p*tmax and *p*zmax.

- Several GeVs driver electron beam.
- High Density Material for EM shower evolution.
- Positron capture by QWT or AMD + NC accelerator tube with solenoid focusing.
- 6 GeV drive electron with 4X₀ target yields one e+/e-.

EM Shower Max

Positron Generation Positron Capture Positron Source ILC Positron

Summary

Source

- A, Z : mass number and atomic number
- Approximated expression for the shower max length in X₀;

 $T_{max} = 1.01 \left| \ln \left| \frac{E_0}{\epsilon_0} \right| - 1 \right|$

energy

 $-\varepsilon_0$: critical energy

- Eo: Injected electron

$$X_0 = \frac{716.4[g.cm^{-2}]A}{Z(Z+1)\ln(287/\sqrt{Z})}$$

Positron Source Masao Kuriki (Hiroshima/KEK) 1-10 October 2007 2nd International Accelerator School for Linear Colliders at Erice, Italy

16

ilc

Positron

Generation	by passing through
Positron Capture	energy g
Positron Source	This gan material
ILC Positron Source	► Same ca
Summarv	

- By passing more than 100 GeV energy electrons through a short period undulator, more than ~10MeV energy gamma rays are generated.
- This gamma ray is converted to positrons in a heavy material.
 - Same capture system.

Undulator Radiation

- Positron Generation Positron Capture Positron Source
- ILC Positron Source

Summary

- Electron speed in undulator along the longitudinal axis is less than speed of light due to zig-zag motion.
- Photons are emitted if the wave-plane path-length difference between undulator periods is quantized with the photon wave length.
- Eph = 10 MeV photons (1st harmonic cut off) are obtained with K=1.0, λu=0.01, E=130 GeV.

Positron Source Masao Kuriki (Hiroshima/KEK) 1-10 October 2007 2nd International Accelerator School for Linear Colliders at Erice, Italy 18

electron

S

UTITITITI

λυ

Compton Scheme

Positron Generation Positron Capture Positron Source ILC Positron Source

- Compton back scattering between several GeVs electron and laser photons generates ~ 30 MeV gamma rays.
- These gamma rays are converted to positrons.
- If the laser is circularly polarized, positron can be polarized.

Compton Back-scattering

Positron Generation Positron Capture Positron Source ILC Positron Source

- Inverse Compton scattering between laser photon and electron beam.
- Laser acts as a quite short period undulator; high energy gamma (several 10s MeV) is obtained with few GeV electron beam.

EL: Laser energy 1eV @ 1um.
 Electron beam 1GeV, y=2000.

Ε_γ ~ 16MeV

Positron Source Masao Kuriki (Hiroshima/KEK) 1-10 October 2007 2nd International Accelerator School for Linear Colliders at Erice, Italy 20

ILC Positron Source

Positron Generation Positron Capture Positron Source ILC Positron Source Summary

Parameter	Value	Unit
Bunch charge	3.2(1.6)	nC
Bunch length (rms)	4.3	ps
Norm. emittance (ɛx+ɛy)	0.09	m.rad
Bunch separation	369 (189)	ns
Bunch number in macro pulse	2625(5120)	number
Macro pulse length	0.9	ms

- Undulator scheme+ low intensity electron driven scheme (10%) is a baseline configuration.
- Compton scheme is an advanced alternative.
- Electron driven scheme is a back up option (when any unexpected serious difficulties were appeared for the baseline).

ILC Positron Source

Summary

Source

- Gamma rays for positron generation is produced by passing 150 GeV electron through undulator.
- Gamma rays are converted to positron.
- A positron source driven by 0.5 GeV electron is a back up for high availability.
- A common 5 GeV positron booster.

System Specifications

Positron Generation				
Positron Capture	Parameter	Value	Unit	
Positron	Gamma/bunch	1.20E+13	Number	
Source	Positrons/bunch	2.0E+10(1.0E+10)	Number	
LC Positron Source	Positron yield	1.5	e+/e-	
Summary	Electron drive energy	150 GeV	GeV	
	Drive beam energy loss	4.8 (9.6)	GeV	
	Undulator length	147 (300)	m	
	Polarization (upgrade with 300m und.)	60	%	

Helical Undulator

ILC Positron Source Summary

116

 Two helical coils powered by opposite currents.
 Longitudinal field are cancelled and spiral transverse fields is appeared.

By Yury Ivanyushenkov

Positron Source Masao Kuriki (Hiroshima/KEK)

Undulator Specifications

Positron Generation	Undulator Type	SC Helical	-
Positron	Undulator period	11.5	mm
Capture	Undulator Strength (K)	0.92	-
Source	Magnet Current	205 (86% of critical)	A
ILC Positron Source	Magnetic field (on axis)	0.86	Т
Summary	Undulator Length (unpolarize)	147	m
Beam Aperture	5.85	mm	
	Photon Energy (1st hrm)	10.07	MeV
	Max. photon power	131	kW

Polarized Positron

Positron Generation Positron Capture Positron Source ILC Positron Source Summary

- Energy, angle, and helicity from undulator radiation are correlated.
- By taking gammas in superforward direction, gamma rays and positrons are polarized.
- Number of particle is decreased by the collimation; need longer undulator.

$$\frac{dN_n}{dE} \left[\frac{1}{MeV}\right] = \frac{10^6 e^{2L}}{4\pi \epsilon c^2 h^2} \frac{K^2}{\gamma^2} \left[J'_n(x)^2 + \left(\frac{\alpha_n}{K} - \frac{n}{x}\right)^2 J_n(x)^2\right]$$
$$\theta = \frac{1}{\gamma} \sqrt{n \frac{\omega_n (1 + K^2)}{\omega} - 1 - K^2}$$

1-10 October 2007 2nd International Accelerator School for Linear Colliders at Erice, Italy

Positron Generation Positron Capture

> Positron Source

ILC Positron Source

Summary

Target : Ti-6% Al-4% V with 0.4 X₀, rotating with tangential speed 100 m/s.

- ▶ Beam spot : 1.5 mm
- Heat load by gamma : 18 kW
- Heat load by Eddy current : 2MW (solid plate), 20kW (rim).

Positron Source Masao Kuriki (Hiroshima/KEK)

Positron Capture

Positron Generation Positron Capture Positron Source ILC Positron Source

Summary

AMD (Bi~5T, Bf~0.5T in 20cm): pulsed coil with bucking coil to shield any magnetic field in the target to avoid Eddy current problem.

L-Band NC accelerator tube with 12 ~ 15 MV/m.

Positron Source Masao Kuriki (Hiroshima/KEK)

Remote Handling

Laser Compton Scheme

- Positron Generation Positron Capture Positron Source ILC Positron Source Summary
- Compton Ring : 1/10 of DR circumference storing 280 6.2(3.1)nC 1.3 GeV bunches with 6.16 (3.08) ns spacing.
- 10 optical cavities, which store 600mJ mode lock YAG laser (600µJ/pulse) by pulse-stacking technology.
- 1.7E+10 y in 23-29 MeV energy range are generated every 6.2 ns; 2.4E+8 positron per bunch are obtained.
- 28000 bunch train with 10ms interval are repeated 10 times; 100 bunches are filled to each bucket in DR.

30

Positron Source Masao Kuriki (Hiroshima/KEK)

Source

Summary

- Polarized gamma-ray beam is generated in the Compton back scattering inside optical cavity of CO₂ laser beam and 4 GeV e-beam produced by linac.
- Laser system relies on the commercially available lasers but need R&D for high repetition operation.
- Ring cavity with laser amplifier realizes the CO2 laser pulse train.

ERL Laser Compton

- ▶ 1.5nC electrons with 62ns (24mA) -> 8.2e+10 γ .
- ► 7.5e+7 e+/bunch is obtained.
- Top-up injection up to 400 bunches in a same bucket make 3.0e+10 e+/bunch.
- Another 100ms is for damping.

Positron Stacking

1-10 October 2007 2nd International Accelerator School for Linear Colliders at Erice, Italy

Source

Summary

- Liquid Pb target + BN window is very strong against high peak power.
- Short bunch spacing mode (2625 6.2GeV 10¹⁰ bunches 6.2ns spacing) in 1mm² spot makes 1.0 GeV/mm²10¹².
 - The load to the target is tolerable.

Positron Source Masao Kuriki (Hiroshima/KEK)

Electron Driven Scheme (2)

Positron Generation Positron Capture Positron

ILC Positron Source

Source

Summary

Short pulse operation (16µs) allows higher gradient, eg. 25 MeV/m with positron yield 2.1 e+/e-.

- Positron per bunch is 2.1x10¹⁰.
- 10T Flux concentrator increases the capture and relaxes the condition.
- NC accelerator for edriver and e+ booster.

Positron Source Masao Kuriki (Hiroshima/KEK)

Generation Positron Capture Positron Source

Positron

ILC Positron Source

Summary

- Gamma radiation by e- beam in a crystalline W target along the crystal axis is enhanced by channeling and coherent bremsstrahlung.
- A clear enhancement on the positron generation with the crystalline W target is experimentally confirmed at KEKB injector.

Positron Source Masao Kuriki (Hiroshima/KEK)

ilc

Positron Generation Positron Capture Positron Source ILC Positron Source Summary

- Positron yield by the crystalline target is enhanced by ~30% with thinner (~9mm) target thickness.
- The heat load becomes almost half compare to the amorphous target.
- The heat load normalized to the generated positron flux is 40% of that by amorphous target. It relaxes the technical limitation very much.

Positron Source Masao Kuriki (Hiroshima/KEK)

Summary

Positron Generation Positron Capture Positron Source ILC Positron Source

Summary

- Fundamentals of positron generation and its capture system are explained.
- ILC Positron Source is based on Undulator Scheme with auxiliary source based on electron driven scheme.
- Laser Compton scheme is advanced alternative.
- Electron driven is still a vital option.
- Need a lot of interesting works to implement the positron source.

Reference

Positron Generation Positron Capture Positron Source ILC Positron Source

ration Acc

Summary

- "Positron Sources" by R. Chehab, in proceedings of CERN Accelerator School, CERN 94-01, 1994
- "Positron Source" by T. Kamitani, Text book for high energy accelerator seminar OHO2002, 2002 (in Japanese)
- "Handbook of Accelerator Physics and Engineering" edited by A. Chao and M. Tigner, World Scientific, 1998
- "Conversion system for obtaining highly polarized electrons and positrons", by V.E. Balakin and A.A. Mikhailichenko, INP 79-85.
- Conceptual Design of a Polarised Positron Source Based on Laser Compton Scattering", by S. Araki et al, KEK Preprint 2005-60, 2005.
- WEB site of PosiPol WS 2007 (LAL, May, 2007) http://events.lal.in2p3.fr/conferences/Posipol07/

2-1) How much beam energy, E, is neccessary to obtain 10 MeV photons from undulator? Undulator strength parameter, K, is given as $K=93.4 B_0[T]\lambda_p[m]$

- λ_p : undulator period length; λ_p =0.01m
- n: harmonic number=1
- Bo: Peak magnetic field, 1T

2-2) How much beam energy, E, is neccesary to obtain 10 MeV photons from Laser Compton? Assume 1µm wave length for laser.

- Planck constant : 6.63E-34 Js
- Speed of light : 3.00E+8 m/s