Spin Rotator

for Linear Colliders KURIKI Masao (Hiroshima/KEK)

- Introduction.
- Fundamentals of Spin dynamics.
- ILC Spin Rotator.
- Summary.

Summary

Introduction (1)

II

- Spin Control : Spin is one of the most important parameter in LC.
- Determine the initial states.
- Compensate the background processes through helicity selection.
- Then, Spin direction of electrons (optionally positrons) at IP should be controlled as desired.
-Polarization Preserve :
- Spin precession in DR with Energy Spread will destroy the polarization.
- To preserve the polarization, spin direction has to be right perpendicular to the DR orbit plane.

Introduction (2)

$$
\sigma\left(e^{+} e^{-}->W^{+} W^{-}\right)
$$

with GRACE System Developed by

New Physics Search

H. Shimizu/
S. Riemann

Polarization Preserve

Introduction

Fundamentals

ILC Spin
Rotator

Summary

- If the spin direction is not perpendicular to the horizontal plane, spin precesses during the storage.
- Because the precession frequency depends on the beam energy, the precession phase is randomized by energy spread.
- This randomization causes a significant depolarization. The spin direction has to be perpendicular to the horizontal plane to avoid this depolarization effect by the precession.

Spin Rotators in LC

Introduction

Fundamen-
tals
ILC Spin

Summary

Thomas-BMT Equation

Thomas-BMT Equation

$$
\begin{gathered}
\frac{d \vec{P}}{d t}=\vec{\Omega}_{0} \times \vec{P} \\
\vec{\Omega}_{0}=\frac{-e}{m \gamma}\left[(1+G \gamma) \vec{B}_{\perp}+(1+G) \vec{B}_{\|}+\left(G \gamma+\frac{\gamma}{1+\gamma}\right) \frac{\vec{E} \times \vec{v}}{c^{2}}\right]
\end{gathered}
$$

- \vec{P} : polarization vector.
- $G=\frac{g-2}{2}$ is anomalous magnetic moment, g is gyromagnetic ratio ; G~0.00115965 for electrons.
- \vec{E}, \vec{B} : Electro and magnetic field.
- Do not worry if you can not imagine this complicated geometry.

Solenoid Magnet

- In solenoid field (only longitudinal B field):

$$
\frac{d \vec{P}}{d t}=\frac{-e}{m \gamma}(1+G) \vec{B}_{0} \times \vec{P}
$$

- Integrating this equation,

$$
\begin{gathered}
\vec{P}(t)-\vec{P}(0)=\frac{e}{m \gamma}(1+G) \int B_{0} \times \vec{P} d t \\
\phi(t)=\frac{\vec{P}(t)-\vec{P}(0)}{\vec{P}}=\frac{e}{m \gamma}(1+G) \sin \theta \int B_{0} d t
\end{gathered}
$$

- If the initial polarization is purely transverse to Boand convert dt -> $\mathrm{dt} / \mathrm{ds} \mathrm{ds}$,

$$
\phi(t)=\frac{e}{m \gamma \beta c}(1+G) \int B_{0} d s
$$

Bending Magnet

Introduction

Fundamen-
tals
ILC Spin
Rotator

Summary

- In dipole magnet (only vertical B field):

$$
\frac{d \vec{P}}{d t}=\frac{-e}{m \gamma}(1+G \gamma) \vec{B}_{0} \times \vec{P}
$$

- Bending angle of the particle trajectory by the dipole field is

$$
\frac{d \vec{v}}{d t}=\frac{-e}{m \gamma} \vec{B}_{0} \times \vec{v}
$$

- Then, if we see the polarization vector comoving frame with the particle velocity,

$$
\begin{aligned}
\frac{d \vec{P}^{\prime}}{d t} & =\frac{e G}{m} \vec{B}_{0} \times \vec{P} \\
\phi^{\prime}(t) & =\frac{\vec{P}^{\prime}(t)-\vec{P}^{\prime}(0)}{\vec{P}^{\prime}}=\frac{e G}{m \beta c} \sin \theta \int B_{0} d s
\end{aligned}
$$

- Longitudinal Polarization should be perpendicular before DR injection.
 - Polarization control after DR.

ILC Spin
Rotator

Summary

Before DR

- Spin direction of generated beam from the polarized electron source (or polarized positron source) is longitudinal.
- By passing many bendings, Spin precession in the horizontal axis.
- Spin direction can not be perpendicular to the horizontal plane only with bendings -> solenoid rotators are necessary.

Bending

Solenoid

After DR

- Spin in DR is aligned to perpendicular to the horizontal plane.
- In RTML (Ring To Main Linac), this perpendicular polarization is preserved (unchanged) by bendings.
- This perpendicular polarization should be operated as desired:
- Forward and backward longitudinal polarization.
- Any transverse directions.
\bigcirc

Bending

Emma Rotator (1)

- The transverse beam emittance has a large aspect ratio : $8 \mu \mathrm{~m}$ in horizontal and 20 nm in vertical.
- Solenoid field rotates not only the spin, but also transverse phase spaces.
- Solenoid increases the vertical emittance via the coupling between the horizontal and vertical motion.

Emma Rotator (2)

- Roll by a solenoid magnet $\left(\varphi_{b}\right)$ is one half of the spin rotation angle $\left(\varphi_{s}\right)$

$$
\phi_{s}=2 \phi_{b}
$$

- Spin rotation simultaneously rotate the beam orbit and makes the $x-y$ coupling and emittance growth.

- Vertical emittance after this rotation is

$$
\begin{gathered}
\epsilon_{y}^{2}=\epsilon_{x 0}^{2} S^{4}+\epsilon_{y 0}^{2} C^{4}+\epsilon_{x 0} \epsilon_{y 0} C^{2} S^{2}\left(\beta_{x} \gamma_{y}-2 \alpha_{x} \alpha_{y}+\beta_{y} \gamma_{x}\right) \\
C \equiv \cos \left(\phi_{s} / 2\right) \quad S \equiv \sin \left(\phi_{s} / 2\right) \\
\alpha_{x, y}, \beta_{x, y}, \gamma_{x, y}: \text { Twiss parameters }
\end{gathered}
$$

Emma Rotator (3)

- Is it possible to rotate only the spin and not the particle phase space? \rightarrow Yes, that is Emma rotator $=$ Solenoid + Q magnets + Solenoid.
- Each solenoid rotates spin and phase space with exactly same amount.
- Q magnets change the betatron phase with 360 deg in x and 180 deg in y. Rotation by the two solenoids are canceled out (no emittance growth).
- The total rotation angle of Emma spin rotator is 2φ, where φ is rotation angle by a single solenoid.

Solenoid Q-magnets

Solenoid

- Is it possible to rotate only the spin and not the particle phase space? -> Yes, that is Emma rotator = Solenoid + Q magnets + Solenoid.
- Each solenoid rotates spin and phase space with exactly same amount.
- Q magnets change the betatron phase with 360 deg in x

Summary

ILC Spin
Rotator

Introduction

Fundamentals
Rotat

Emma Rotator (3)

 and 180 deg in y. Rotation by the two solenoids are canceled out (no emittance growth).- The total rotation angle of Emma spin rotator is 2φ, where φ is rotation angle by a single solenoid.

Polarization

Solenoid

Q-magnets

Solenoid

Beam

Emma Rotator (3)

- Is it possible to rotate only the spin and not the particle phase space? -> Yes, that is Emma rotator = Solenoid + Q magnets + Solenoid.
- Each solenoid rotates spin and phase space with exactly same amount.
- Q magnets change the betatron phase with 360 deg in x

Summary
Introduction

Fundamentals

ILC Spin
Rotator

Emma Rotator (3)

- Is it possible to rotate only the spin and not the particle phase space? -> Yes, that is Emma rotator = Solenoid + Q magnets + Solenoid.
- Each solenoid rotates spin and phase space with exactly same amount.
- Q magnets change the betatron phase with 360 deg in x and 180 deg in y. Rotation by the two solenoids are canceled out (no emittance growth).
- The total rotation angle of Emma spin rotator is 2φ, where φ is rotation angle by a single solenoid.

Polarization

Beam

Transfer Matrix

- Transfer matrix of a solenoid

Introduction
Fundamen- tals
ILC Spin Rotator

$$
R_{S}=\left|\begin{array}{cccc}
C^{2} & S C / k & S C & S^{2} / k \\
-k S C & C^{2} & -k S^{2} & S C \\
-S C & -S^{2} / k & C^{2} & S C / k \\
k S^{2} & -S C & -k S C & C^{2}
\end{array}\right|
$$

Summary

- Inserting a reflector beam line between two solenoids, the matrix is

$$
R_{S}\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right| R_{S}=\left|\begin{array}{cccc}
C & S / k & 0 & 0 \\
-k S & C & 0 & 0 \\
0 & 0 & -C & S / k \\
0 & 0 & k S & -C
\end{array}\right|
$$

- X-Y coupling terms are vanished by this insertion. Emittance growth by the coupling is cured.

Introduction

Fundamentals

ILC Spin Rotator

Summary

- Spin rotator = Solenoid Rotator + Dipole Rotator + Solenoid Rotator.
- Solenoid rotator consists of two solenoid magnets and one reflector between them.
-Changing the angle of the solenoid rotators, spin direction can be controlled as desired.

Initial	Solenoid 1	Dipole	Solenoid 2	Final
\uparrow	90	90	90	\rightarrow
\uparrow	0	90	0	\uparrow
\uparrow	0	90	90	\bigcirc
\uparrow	180	90	0	\downarrow
\uparrow	180	90	90	\times
\uparrow	-90	90	0	\leftarrow

- Spin rotators in LC has two rolls.
- Polarization preservation (spin rotation before DR).
- Spin control (spin rotation after DR).
- Spin rotation without any xy coupling (vertical emittance growth), is implemented by Emma rotator.

Summary

- With these Spin rotators, the longitudinally polarized beam generated at E-Gun (positron source) is transported without any significant depolarization and collisions with any combination of spin directions at interaction point are implemented.

References

ift
-P. Emma, "A Spin Rotator System for the NLC", NLC note 7 (December 1994)
-P. Schmid and N. Walker, "A Spin Rotator for the ILC", EUROTeV-Report-2006-68 (June 2006)
-P. Schmid "A Spin Rotator for the ILC", EUROTeV-Report-2005-24 (Feb 2006)

Home Work

-4-1) Derive Precession angle by Solenoid rotator (page 8) from Thomas-BMT Equation.
-4-2) Calculate the bending magnetic field (T.m) to rotate the spin vector with 90 deg.

