

Bunch Compressor for Linear Colliders KURIKI Masao (Hiroshima/KEK)

Bunch Compressor Masao Kuriki (Hiroshima/KEK)

İİL

Introduction Fundamentals

ILC Bunch

Compressor

Summary

- ► Introduction.
- Fundamentals.
- ► ILC bunch compressor design.
- Summary.

Introduction

Fundamentals ILC Bunch Compressor

Summary

In any accelerator with RF field, the beam should be concentrated in a short period of longitudinal space for small energy spread; - E=E₀cos(wt-ks)

Bunch compressor and buncher shorten the bunch length down to an adequate size for acceleration.

Bunch Compressor Masao Kuriki (Hiroshima/KEK)

Introduction Fundamentals ILC Bunch Compressor Summary

- Bunching after the source (See Source part)
 - Particle source can generate only long bunch or continuous beam.
- Bunching after the storage ring (Main issue in this part)
 - In a storage ring, the bunch length is determined by RF and its amplitude; It is sometimes too long to accelerate in Linac.
- There are two ways for bunch compression:
 - Velocity Bunching
 - Magnetic Bunching

Introduction Fundamentals ILC Bunch Compressor Summary

- Bunch compression is performed by velocity modulation within a bunch;
 - Bunch head is decelerated.
 - Bunch tail is accelerated.
- ► Beta is saturated as $\beta = 1 1/\gamma^2 \sim 1$ if $\gamma \gg 1$.
- Then, it works only for low energy particle.
 - Bunch compression at the injector.

Introduction	
Fundamen- tals	
ILC Bunch Compressor	
Summary	

- Lower RF accelerating cavities employed.
- Bunch sits where the head is decelerated and the tail is accelerated.
- By drifting, bunch length is minimized at some point. The whole bunch is then accelerated to suppress the relative energy spread.

1-10 October 2007 2nd International Accelerator School for Linear Colliders at Erice, Italy

Magnetic Bunching (1)

Introduction

Fundamentals ILC Bunch Compressor

Summary

- Bunch compression is performed by energy modulation with dispersive path length difference.
 - Chicane, Wiggler, Arc, etc.
- A path length difference by a dispersive section, Δz is $\Delta z = \eta \frac{\Delta E}{E}$

where η is (longitudinal) dispersion and $\Delta E/E$ is relative energy deviation.

It works well for any energy particle because the measure is the relative energy deviation.

- Introduction
- Fundamentals
- ILC Bunch Compressor Summary
- Energy modulation by RF (acc- and deceleration).
- Drift through a dispersive section rotates the beam in the phase space.
- By appropriate modulation and drift, the bunch length is compressed.

Formalism : R Matrix (1)

Introduction

Fundamentals

ILC Bunch Compressor

Summary

 $\vec{X}(s) = R \vec{X}(0)$

$\left[x(s) \right]$	R_{11}	<i>R</i> ₁₂	<i>R</i> ₁₂	<i>R</i> ₁₃	R_{14}	R_{15}	R_{16}	$\left[x(0) \right]$
x'(s)	R_{21}	<i>R</i> ₂₂	<i>R</i> ₂₂	<i>R</i> ₂₃	<i>R</i> ₂₄	R_{25}	R_{26}	x'(0)
y(s)	$ R_{31} $	R_{32}	R_{32}	R_{33}	R_{34}	R_{35}	R_{36}	y(0)
y'(s)	$ R_{41} $	R_{42}	R_{42}	R_{43}	R_{44}	R_{45}	R_{46}	y'(0)
z(s)	R_{51}	R_{52}	R_{52}	R_{53}	R_{54}	R_{55}	R_{56}	z(0)
$\delta(s)$	R_{61}	R_{62}	R_{62}	R_{63}	R_{64}	R_{65}	R_{66}	$\delta(0)$

► It is reduced if there is no mixing to other DOF. $\begin{bmatrix} z(s) \\ \delta(s) \end{bmatrix} = \begin{bmatrix} R_{55} & R_{56} \\ R_{65} & R_{66} \end{bmatrix} \begin{bmatrix} z(0) \\ \delta(0) \end{bmatrix}$

Bunch Compressor Masao Kuriki (Hiroshima/KEK)

Introduction

Fundamentals

ILC Bunch Compressor

Summary

Example of R-matrices

- Drift space

$$\begin{bmatrix} z(s) \\ \delta(s) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z(0) \\ \delta(0) \end{bmatrix}$$

– Dispersive area

$$\begin{bmatrix} z(s) \\ \delta(s) \end{bmatrix} = \begin{bmatrix} 1 & R_{56} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z(0) \\ \delta(0) \end{bmatrix}$$

- Energy modulation

$$\begin{bmatrix} z(s) \\ \delta(s) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ R_{65} & 1 \end{bmatrix} \begin{bmatrix} z(0) \\ \delta(0) \end{bmatrix}$$

Bunch Compressor Masao Kuriki (Hiroshima/KEK)

Concept of Bunch Compressor

Summary

Energy Modulation : RF cavity.

- R_{65} at zero crossing ...
- Dispersive section : Chicane, Wiggler, Bend,...
 - For example, four bending magnets compose a chicane

Bunch Compressor Masao Kuriki (Hiroshima/KEK)

Energy Modulation

Introduction Fundamentals ILC Bunch Compressor Summary

Bunch Compressor Masao Kuriki (Hiroshima/KEK)

Dispersive Section

Introduction

İİL

Fundamentals

ILC Bunch Compressor

Summary

Drift through a dispersive section rotates the beam in the phase space.

$$\begin{bmatrix} z(s_2) \\ \delta(s_2) \end{bmatrix} = \begin{bmatrix} 1 & R_{56} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z(s_1) \\ \delta(s_1) \end{bmatrix}$$

Total Transfer

 $\delta(\Delta E/E)$

Introduction

Fundamentals

ILC Bunch Compressor

Summary

$\begin{vmatrix} z(s_2) \\ \delta(s_2) \end{vmatrix} = \begin{vmatrix} 1 & R_{56} \\ 0 & 1 \end{vmatrix} \begin{vmatrix} 1 & 0 \\ R_{65} & 1 \end{vmatrix} \begin{vmatrix} z(s_0) \\ \delta(s_0) \end{vmatrix}$ $= \begin{vmatrix} 1 + R_{56} R_{65} & R_{56} \\ R_{65} & 1 \end{vmatrix} \begin{vmatrix} z(s_0) \\ \delta(s_0) \end{vmatrix}$

► If $1+R_{56}R_{65}=0$, the phase space distribution rotate $\pi/2$ and the bunch length is minimized.

The phase in the linac is insensitive to phase errors or bunch lengthening in the DR.

$$\begin{bmatrix} z(s_2) \\ \delta(s_2) \end{bmatrix} = \begin{bmatrix} 0 & R_{56} \\ R_{65} & 1 \end{bmatrix} \begin{bmatrix} z(s_0) \\ \delta(s_0) \end{bmatrix}$$

Bunch Compressor Masao Kuriki (Hiroshima/KEK) 7

 R_{65}

 R_{56}

Fundamentals ILC Bunch

Introduction

Final bunch length after an optimized BC section (1+R₅₆R₆₅=0) is determined by the initial energy spread as;

$$\delta_2 = R_{56} \delta_0$$

Compressor

Summary

- It can be understood by considering the transport of a reference point.
 - $\begin{bmatrix} 0\\ R_{65}z_0 \end{bmatrix} = \begin{bmatrix} 0 & R_{56}\\ R_{65} & 1 \end{bmatrix} \begin{bmatrix} z_0\\ 0 \end{bmatrix}$ $\begin{bmatrix} R_{56}\delta_0\\ \delta_0 \end{bmatrix} = \begin{bmatrix} 0 & R_{56}\\ R_{65} & 1 \end{bmatrix} \begin{bmatrix} 0\\ \delta_0 \end{bmatrix}$ $\begin{bmatrix} 0\\ R_{56} \end{bmatrix}$

Bunch Compressor Masao Kuriki (Hiroshima/KEK)

Introduction

Fundamentals

ILC Bunch Compressor

Summary

Parameter	Initial Value	Final Value	Unit
Energy	5.0	15.0	GeV
Energy Spread	0.15	1.5	%
Emittance	8.0 / 20	< 9.0 / 24	µm/nm
Horizontal beam jitter	1	0.1	σ
Bunch length	9.0	0.3	mm

Bunch length should be shorten down to 0.3 mm for acceleration in ML.

- Energy spread is increased in the process of the bunch compression, but it should be within an acceptable size.
- Emittance growth should be within a budget.

ILC Bunch Compressor

Introduction Fundamentals

ILC Bunch Compressor

Summary

► ILC Bunch Compressor is placed before ML.

▶ ILC Bunch Compressor is 2 stages based on wiggler.

- Gives a large flexibility on the tuning.
- Gives a large tolerance on system errors.

Bunch Compressor Masao Kuriki (Hiroshima/KEK)

ILC Bunch Compressor

Introduction

Fundamentals

ILC Bunch Compressor

Summary

Parameter	BC1	BC2	Unit
Initial Energy	5.0	4.88	GeV
Initial Energy Spread	0.15	2.5	%
Initial Bunch Length	9.0	1.0	mm
RF Voltage	0.448	11.4	GV
RF Phase	-105	-27.6	Deg
R ₅₆	-376	-54	mm
Final Energy	4.88	15.0	GeV
Final Energy Spread	2.5	1.5	%
Final Bunch Length	1.0	0.3	mm
Total Section Length	238	758	m

- BC1: Almost zero cross, large BC factor, relatively large energy spread.
- BC2: Small BC factor, simultaneous acceleration to suppress the relative energy spread.

Summary

Introduction

Fundamentals

ILC Bunch Compressor

Summary

There are two ways for bunch compression:

- Velocity bunching (for low energy beam)
- Magnetic bunching (for high energy beam)
- Bunch compression after DR is for preparation of accelerator in main linac based on magnetic bunching.
- The final bunch length after the BC section was determined by the initial energy spread and R₅₆.
- ILC BC has been designed and satisfied basic requirements.

- E.S. Kim, "Bunch Compressors", 1st Accelerator School for Linear Colliders" (May 2006)
- Chap. 2. "Handbook of Accelerator Physics and Engineering", edited by A. Chao and M. Tigner, World Scientific (September 1998)
- Reference Design Report of ILC, August, 2007.

- Calculate the expected final bunch length after BC section assuming
 - $\delta_0 = 0.15\%$

- $-R_{56}=-0.2$ (m)
- How much voltage (VRF) is required to compose this BC section?
 - Initial energy is 5 GeV.
 - Initial Bunch length 9mm.
 - RF is 1.3 Ghz.
 - RF Phase is -90 deg (zero cross).