

Timing and Synchronization

S. Simrock and Axel Winter DESY, Hamburg, Germany

1

İİİ

- Motivation for timing and synchronization

Overview

- Architecture of timing system
- Phase Reference System
 - Signal Generation
 - Coaxial Distribution
 - Optical Distribution
 - Demonstrated Performance

• Timing System

İİĻ

- Generation and distribution of event triggers to subsystems
 - ... Includes time stamps, pulse IDs and data
- Generation and distribution of stable clocks signals
- Subsystems include lasers, rf systems, beam diagnostics, and experiments
- Typical stability of the order of ps (clocks) to ns (trigger)
- Synchronization
 - Generation and distribution of frequency references
 - Generation and distribution of ultrastable phase references
 ... as zero crossings of sine wave or as short pulses
 - Subsystems include lasers, rf systems, beam diagnostics, and experiments
 - Typical stability of the order of fs (phase) to ps (frequency)

Timing and Synchronization Needs

		accelerator sub-systems							
		LL RF	mag. & PS	undul.	diags.	timing	lasers	ctrl	
accelerator sections	inj	X	Х		X	X	X	X	
	low en linac	X	X		X	X		X	
	bunch compr	·	Х		X	X		X	
	linac	X	<u>X</u>	•••••	·····X·····	X		X	
	spread		Х		X			Х	
	hv gen		X	X	Х	X	X	Х	
	beam lines				Х	X	X	X	

Stefan Simrock

ir.

Stefan Simrock

Redundant reference transmission with failover

Redundant event system distribution

Sector timing controller

Stefan Simrock

Synchronization Concept TESLA (1996)

Stefan Simrock

Phase drift 7/8" and 1/2" Cellflex

2nd LC School, Erice 2007, Radio Frequency Systems

Stefan Simrock

Phase drift of 80 m 7/8" Cellflex cable

Stefan Simrock

Concept NLC 1999

ΪŪ

• Advantages:

İİİ

- Optical generation and transmission with better jitter and drift performance.
- Not susceptible to EMI
- Ground loop avoidance
- Free benefit: Some diagnostics are only possible with optical references
- Disadvantages:
 - Only point to point links
 - More complex
 - Conversion to rf required

- Injector
 - Timing jitter of gun compressed by bunch compression ratio ($\sim 1/50$)
 - Gun laser system can be locked optically to master laser
 - Amplitude/Phase stability critical in injector cavities (off-crest acceleration)

Concept of optical synchronization (XFEL)

- Amplitude and phase stability crucial for final timing jitter of X-ray pulse
- Jitter of RF in cavities responsible for centroid energy jitter
- Direct transfer into timing jitter at bunch compressor
- Amplitude/Phase stability critical in booster cavities (off-crest acceleration)

Concept of optical synchronization (XFEL)

- Main Linac
 - Amplitude stability: 10⁻³
 - Phase stability: 0.1 deg
- On-crest acceleration relaxes stability condition
- Coaxial distribution system for reference possible

Timing jitter at exit of bunch compressor

- Source of timing jitter
- Caused by RF acceleration prior to BC-

Vector sum regulation => 1 deg == 1.8% (statistic 32/8 cav. helps) But! Phase changes can be correlated due to local oscillator changes

Synchronization System Layout

- A master mode-locked laser producing a very stable pulse train
- The master laser is locked to a microwave oscillator for long-term stability
- length stabilized fiber links transport the pulses to remote locations
- other lasers can be linked or RF can be generated locally

Laser Oscillator synchronized to MO

- Mode locked laser emits femtosecond laser pulses
- High pulse energy (~ 1 nJ)

İİĹ

- Pulse duration: ~ 100 fs FWHM
- Repetition rate: 30 -100 MHz
- Integrated timing jitter $(1 \text{ kHz} 20 \text{ MHz}) \sim 10 \text{ fs}$
- Integrated amplitude noise (10 Hz 1 MHz): 0.03 %

Stefan Simrock

Timing stabilized fiber links

ΪĹ

- Transmit pulses in dispersion compensated fiber links
- No fluctuations faster than T=2nL/c (causality!)
- $L = 1 \text{ km}, n = 1.5 \implies T = 10 \text{ } \mu\text{s}, f_{\text{max}} = 100 \text{ } \text{kHz}$
- Fiber temperature coefficient: $\sim 5 \times 10^{-6}$ /m Lee et al. Opt. Lett. 14, 1225-27 (1989)

- 400 meter stabilized test link in Hall 1 at DESY
- Jitter 7.5 fs rms during 12 hours
- Additional 25 fs rms drift during that time

2nd LC School, Erice 2007, Radio Frequency Systems

Stefan Simrock

ilr ilt **Bunch Arrival Time Monitor (BAM)** ΛΛΛΛΛΛΛΛ ADC MLO EOM Laser pulses From link Pick up: button electrode 54 MHz Courtesy of F. Löhl electron bunch arrival time: Ø17mm voltage modulating - early beam pick-up signal the laser pulse amplitude - correct - late The timing information of the electron bunch is transferred into a laser amplitude modulation. This modulation is measured with a photo detector and laser pulse sampled by a fast ADC. (perfectly synchronized)

2nd LC School, Erice 2007, Radio Frequency Systems

Stefan Simrock

ic Bunch arrival time monitor (BAM)

Jitter between two adjacent bunches: ~ 40-50 fs Timing resolution with respect to reference laser: < 30 fs

- Arrival time measurement for all bunches in the bunch train possible!
- Prime candidate for implementation into feedback system

Stefan Simrock

Demonstrated timing stability

item	dev.	value	bandwidth	notes	
	at	[fs _{RMS}]			
µ-wave	off-the-	<10	100-10MHz	f _c =10GHz	
ref. osc.	shelf				
Optical	MIT/	10	1kHz-Nyq.	Er Fiber laser	
Master	DESY	<20	1kHz-Nyq.	Er/Yb glass	
Clock				laser	
Fiber	MIT field	12	0.1Hz-10kHz	group delay	
Optic	test at MIT-			stabilization	
stabilized	BATES				
link	LBNL	<2/°C	L=200m	phase delay	
		0.1/h	long term drift	stabilization	
RF over	MIT	8.8±2.6	1Hz-1MHz	Optical to RF	
FO				conversion	
trans-	LBNL	15	1kHz-40MHz	11fs noise of	
mission				the RF source	

Stefan Simrock

ilc