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1 Introduction

At the end of the previous linac lecture, we had defined the basic building block of the ILC’s linear
accelerator, the RF unit, shown schematically in Figure 1.
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Figure 1: Schematic of an ILC RF unit.

Table 1 reviews the key parameters of the linac RF unit, and Table 2 reviews the key parameters
of the beam which is injected into the linac.

Parameter Value

# of Cavities 26

Average gradient 31.5 MV/m

Total voltage 852 MV

Peak RF Power 10 MW

RF Pulse Length 1.6 msec

RF fill time 600 µsec

Total length 38.0 m

RF-to-beam phase 5◦

Table 1: Key parameters of the linac RF unit.

From the initial energy of the beam, the desired final energy of 250 GeV, and knowledge of the
energy gain, phase offset, and single-bunch loading of the RF cavities, we know that the positron
linac requires 278 RF units; from additional knowledge of the energy loss from the undulator in
the electron linac which is used to produce positrons, we know that the electron linac requires 282
RF units.

The primary feature of the ILC main linac which distinguishes it from other linear accelerators
(other than its tremendous length and vast final energy) is the requirement that the extremely
small emittance of the beam injected into the linac be preserved over its full length. In order to
understand the other issues which drive the design of the linac as a system, therefore, we must
understand the beam dynamics effects which would tend to dilute this extremely small emittance.
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Parameter Value

# Bunches/train 2625

# Trains/second 5

Bunch spacing 369 nsec

Beam current 9.0 mA

Bunch charge 3.2 nC

Energy 15 GeV

Energy spread 1.5%

Bunch length 0.3 mm

γεx,y < 9.0 µm (x), < 24 nm (y)

Table 2: Key parameters of the beam at entrance to the linac.

2 Transverse Wakefields

In the previous lecture on the linac, we saw that the phenomenon of beam loading could be under-
stood in terms of the electron beam exciting modes in the accelerating cavity. In the long-term,
only the modes with the highest Q values tend to survive (i.e., the fundamental accelerating mode),
and therefore the effect can be modeled quantitatively with the R and Q values determined for the
fundamental TM010 mode, while in the shorter term (such as the length of 1 bunch) a very large
number of modes are present, interactions occur on a time scale which is short compared to the
speed-of-light travel times about the RF structure, and a different model must be used to study
beam loading.

We also saw in the previous lecture that RF cavities will support an infinite number and
variety of modes. Accelerating modes, such as the TM010 mode (or “fundamental mode”) are
“monopole” modes: these modes can be excited by an external power source operating at the
correct frequency, or by the passage of the beam anywhere in the cavity, and the modes contain
longitudinally accelerating fields. There are also an entire spectrum of dipole modes: these modes
are driven by any beam which has a dipole moment (ı.e., nonzero charge and an offset from the
symmetry axis of the cavity), and produce a deflecting field in the cavity. Like the longitudinal
wakefields, the dipole modes produce effects on the single-bunch timescale and on the bunch-to-
bunch timescale, and different methods are used to study the effects on these two very different
time scales.

In this section, we will concentrate on the beam dynamics of single-bunch dipole modes, usually
known as transverse wakefields. Later on we will consider the effects at the longer, inter-bunch
timescale.

2.1 Single Bunch Wake Function

by analogy with the single-bunch beam loading (or longitudinal wakefield), it is possible to write
down an approximate formula which estimates the deflecting voltage left behind by a point charge
which is offset from the center of a cylindrically-symmetric accelerating cavity. A particle with
charge q and offset x which passes through a cavity of length L at time t = 0 excites a time-
dependent voltage V (z) = W⊥(z)Lqx, where z ≡ ct and

W⊥(z) ≈ 4Zcs0
πa4

[

1 −
(

1 +

√

z

s⊥

)

exp

(

−
√

z

s⊥

)]

, where (1)
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s⊥ ≡ 0.169
a1.79g0.38

d1.17
,

where a is the aperture radius of the cavity, d is the cell length of the cells which make up the
cavity, and g is the interior width of the cell (i.e., the cell period minus the disc thickness) [1].

SinceW⊥(0) = 0, the leading particles in a bunch do not deflect themselves. This is qualitatively
different behavior than what is observed for the longitudinal wakefield – we have seen that even a
single electron is decelerated by its own longitudinal wake! We can also see that the slope of W⊥

is nonzero at z = 0: W ′

⊥
(0) ≡ ∂W⊥/∂z|z=0 ≈ 2Zc/πa4. In other words, the deflecting field “takes

off” much more rapidly as the size of the hole in the cavity is decreased. Since the size of the
hole is very strongly tied to the fundamental-mode frequency of the cavity, the implication is that
the strength of the head-tail effect is roughly proportional to the fourth power of the fundamental-
mode frequency. In fact, the effect scales slightly less quickly than that, because while W ′

⊥
(0) scales

with the fourth power of a, the parameter s⊥ scales with almost the second power of a, and it is
this parameter which determines how fast the transverse wakefield “rolls over” (or becomes weaker
than a strict linear dependence would dictate). The small compensating effect of aperture on the
s⊥ parameter leads to an approximate transverse wake dependence on the a−3.8, rather than a−4.
Nonetheless, the relatively low frequency selected for the ILC cavities also leads to a relatively weak
transverse wakefield compared to higher-frequency linacs (such as the 3 km SLAC linac, operating
at 2.856 GHz).

Note that the sign of the transverse wakefield is always such that the tail of the beam is deflected
in the same direction as the offset of the head, i.e., if the bunch passes through the cavity above
its symmetry axis, then the tail is kicked upwards.

2.2 Beam Dynamics of the Short-Range Wakefield

Since the transverse wakefield only becomes nonzero when the beam passes off-axis through an
accelerating cavity, we can neglect its effect if the beam always passes on-axis through all cavities.
Unfortunately, this is never going to be the case! there are two reasons why this is never the case:
the beam has some initial offset passing through the linac (either a DC offset or an offset due to
bunch-to-bunch or train-to-train position jitter), and the RF cavities in the linac are not perfectly
aligned.

To understand these two cases, let us use a two-particle model of the beam: a leading particle
with charge q/2, and a trailing particle with equal charge which follows the driving particle a
distance 2σz behind. This is a reasonable model of a bunch with a Gaussian distribution of charge
with RMS length σz.

2.2.1 Short-Range Wakefields and Betatron Oscillations

Let us assume that the beam initially has an offset y0, and that both the leading and trailing
particles have this offset. Let us further assume that the Twiss functions at the injection point are
βy = β0, αy = 0, and that the beam energy at the injection point is E0.

At the end of the linac, which we assume to be 90d in betatron phase from beginning of the
linac, the leading particle’s position goes to zero, although its angle with respect to the beam axis

is given by a simple out-of-phase betatron oscillation: y ′1,f = y0

√

E0/Ef/
√

β0βf . In the absence

of wakefields (at very low charge, for example), the second particle’s trajectory is the same as the
first particle’s. In the presence of wakefields, on the other hand, the second particle receives a kick
at every cavity, proportional to the transverse offset of the first bunch at that cavity, and that kick
leads to an additional betatron oscillation from the cavity to the end of the linac.
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At a given cavity, the driving particle’s position is given by yc,1 = y0

√

βc/β0

√

E0/Ec cos(µc),
where βc, Ec, µc are the betatron function, energy, and betatron phase of the cavity of interest,
respectively. The kick received by the trailing particle is given by:

∆y′2,c =
y1,cqLcW⊥(2σz)

2Ec
(2)

=
y0qLcW⊥(2σz)

2Ec

√

βc/β0

√

E0/Ec cos(µc).

The resulting change in position at the end of the linac is given by

∆y2,f = ∆y′2,cR34(c→ f) (3)

= y0βc

√

βf
β0

√

E0

Ef

qLcW⊥(2σz)

2Ec
cos2 µc.

If we sum over all cavities in the linac, we find:

y2,f =
y0qLcW⊥(2σz)

2

√

βf
β0

√

E0

Ef

∑

cavities

βc
Ec

cos2 µc. (4)

Is that a lot, or a little? Recall that the zero-charge betatron oscillation leads to a final angle

for the particles of y0

√

E0/Ef/
√

β0βf . This is equivalent to a final position of y0

√

E0/Ef
√

βf/β0

(i.e., this is the offset one would get at a point with the same beta function which is 90◦ away in
betatron phase). We can thus rewrite the final position of the second particle:

y2,f = y′1,fβf
qLcW⊥(2σz)

2

∑

cavities

βc
Ec

cos2 µc. (5)

From this, we can see that the wakefield-driven motion of the second particle is large compared to
the free betatron oscillation if:

qLcW⊥(2σz)

4

∑

cavities

βc
Ec

> 1, (6)

where we have substituted 1/2 for the mean value of cos2 µc. Since we want the wakefield-driven
motion to be small compared to the free oscillation, we conclude that we want to reduce the typical
betatron functions in the linac as much as possible, implying that strong focusing is desired.

2.2.2 Short-Range Wakefields and Cavity Misalignments

In the case of misalignments the situation is somewhat different. In this case, if the driving particle
starts out on-axis (which we assume it does in this example), it arrives at the end of the linac
on-axis. The trailing particle is another matter!

Consider a linac with a single misaligned cavity, with offset yc from the nominal axis of align-
ment. At this location, the driving particle passes through the cavity off-axis, resulting in a wakefield
kick to the trailing particle. The kick amplitude is given by:

∆y′2,c = −ycLcqW⊥(2σz)

2Ec
. (7)

At the end of the linac, the resulting kick to the beam is given by

∆y2,f = −ycLcqW⊥(2σz)

2Ec

√

βcβf

√

Ec
Ef

sin∆µc, (8)
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where ∆µc is the phase difference between the end of the linac and the cavity in question.
In the limit of uncorrelated misalignments, the kicks from the many RF cavities will tend to

cancel one another out. Because the number of cavities is finite, the cancelation is imperfect, and
we can compute the expected mean-squared offset of the trailing particle:

< y2
2,f >=< y2

c >
(qLcW⊥(2σz))

2 βf
8Ef

∑

cavities

βc
Ec
. (9)

Is that a lot or a little? We can compare the expected offset of the trailing particle to the
betatron beam size at the end of the linac: σ2

y = εyβf = γεyβfmec
2/Ef . After some boring

mathematics, we find that our criterion – that we want the deflection of the tail to be small
compared to the betatron size of the beam – can be written as:

< y2
c >

(qLcW⊥(2σz))
2

8mec2

∑

cavities

βc
Ec

< γεy. (10)

At the limit, where the tail motion is equal to the beam size, the resulting emittance growth is
25%. This relation is derived in Appendix A.

2.3 Short-Range Wakefield: Implications

From the preceding discussion, we see that there are two criteria for achieving suitable dynamics
in the presence of short-range transverse wakefields: stability of the beam in the case of a betatron
oscillation, and stability of the beam in the case of misaligned cavities. These criteria are expressed
in Equations 6 and 10. In both of these cases, the beam dynamics of short-range wakefields is
improved by reducing the typical betatron functions in the linac.

How small does it have to get? Consider Equation 6. We can estimate the required betatron
functions which are needed in the linac by using the ILC’s nominal parameters (q = 3.2 nC,
Lc = 1.04 m), and estimating the wakefield as W⊥(2σz) ≈ 2σz × 2Z0c/4πa

4 = 2.9 × 1013V/C/m2.
This approximation for the wakefield will give a somewhat pessimistic result, since it assumes that
the wakefield rises linearly behind the trailing particle, whereas in real life it will have begun to
turn over by z = 2σz; but this will allow a reasonable approximation of the results. We can replace
the sum over 1/Ec with 87.2 GeV−1, which is the correct value for a linac which accelerates from
15 GeV to 250 GeV in 280 RF units of 26 cavities each. Putting it all together, Equation 6 implies
that the typical beta functions must be such that 0.0021 m−1βc < 1, or that betatron functions of
under 450 meters are desirable in the main linac.

If we now consider Equation 10, and take into consideration that γεy ≈ 20 nm, we find that for
a 450 meter typical betatron function, an RMS cavity misalignment of 480 µm is required.

Bear in mind that these are upper limits for the quantities under consideration. In point of
fact, it is not acceptable for the wakefield contribution to the final beam motion to be equal to the
betatron contribution, nor is it acceptable for the emittance growth from transverse wakefields to
equal the initial emittance. However, these estimates do make clear that, from the perspective of
wakefield control, the betatron functions want to be small, but they do not have to be incredibly
small; and the RF cavities want to be well-aligned, but they do not have to be incredibly well
aligned.

3 Pitched RF Cavities

In the preceding Section, we considered RF cavities which were misaligned by a pure translation.
Another possible RF cavity misalignment is a pitched cavity: the longitudinal center of the cavity
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is perfectly aligned to the nominal trajectory, but the cavity has a net angle with respect to the
nominal trajectory.

To first order, a pitched RF cavity does not result in any beam dynamical effects from wakefields
– the kicks in the upstream half of the cavity are compensated by the kicks in the downstream
half. In the next approximation there is a small effect from wakefields in this case because the
beam energy is low in the upstream end of the cavity and high in the downstream end, so the
compensation is not exact. As you might expect, this is a small enough effect that we can neglect
it.

A more important effect is that the pitched cavity couples the very strong fundamental mode of
the cavity into the transverse plane – the cavity’s main accelerating field, at 31.5 MV/m, produces
a slight vertical acceleration as well as the large longitudinal one. This results in two important
beam dynamics effects.

3.1 Basic Formalism

Consider a bunch which is accelerated in an RF cavity with frequency ω and voltage Vc. The
voltage as a function of z position in the bunch is given by:

V (z) = Vc cos(z
ω

c
+ φc), (11)

where φc is the cavity’s RF phase offset. If the cavity has a pitch angle ψc with respect to the
survey line, then there is a resulting deflection experienced by particles passing through the cavity:

∆y′c(z) = sinψc
V (z)

Ec
(12)

= sinψc
Vc
Ec

cos(z
ω

c
+ φc).

One important subtlety is that the previous result does not take into account the cavity fringe
fields. At each iris within the cavity, there are radial electric fields and azimuthal magnetic fields
which deflect particles which pass off-center through the irises. For a pitched cavity, it can be
shown that these fringe fields have a focusing effect which is proportional to the deflection from
the fundamental-mode deflection, and which acts in the opposite direction, with the result that
the actual deflection is only 1/2 of what would be predicted from considering only the longitudinal
field of the pitched cavity [2]. Therefore, the net effect is:

∆y′c(z) =
sinψc

2

Vc
Ec

cos(z
ω

c
+ φc). (13)

Applying the logic of the betatron oscillation, we find that at the end of the linac, the resulting
deflection is given by:

∆yf (z) =
sinψc

2

Vc
Ec

cos(z
ω

c
+ φc)

√

βfβc

√

Ec
Ef

sin∆µc. (14)

3.2 Time-Dependent RF Kicks

The first interesting phenomenon is that the head and tail of the bunch, which arrive at different
times, receive different deflections and thus travel on different trajectories to the end of the linac.
The voltage slope as a function of z is given by:

V ′(z) = −Vc sin(z
ω

c
+ φc)

ω

c
. (15)
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At z = 0, the RMS deflection over the length of the bunch can be approximated as V ′(z = 0)σz , or

√

< (∆y′c)
2 > ≈ σz

sinψc
2

Vc
Ec

sinφc
ω

c
. (16)

This results in a spread in final positions of the particles given by:

√

< y2
f > = σz

sinψc
2

Vc
Ec

sinφc
ω

c

√

βfβc

√

Ec
Ef

sin∆µc. (17)

As we did for the case of misaligned cavities, we can recast this as a statistical ensemble of pitched
cavities, estimate the expected mean-squared spread in final particle positions, and compare to the
nominal beam size, with the requirement that the former quantity be smaller than the latter. This
leads to the requirement that:

σ2
z

ω2

c2
< ψ2

c >

8

V 2
c

mec2
sin2 φc

∑

cavities

βc
Ec

< γεy. (18)

One might anticipate that the emittance growth effect of the time-dependent RF kicks is a small
one – after all, the beam rides close to the RF crest, so sinφc is small, and the bunch is short, so
σz is also small. And indeed, one finds that with 450 m betatron functions, the RMS cavity pitch
angle needed to double the emittance from the time-dependent RF kick effect is on the order of 2
milliradians. In the ILC bunch compressors, by comparison, one might expect this to be a large
effect – the beam runs close to the zero-crossing, and the bunch length is much larger.

3.3 Dispersive Centroid Kick

A much more important effect comes from the fact that not all the particles in the bunch have
the exact same energy. The RMS energy spread at the entrance to the linac is about 1.5%, and
this value adiabatically damps down to 0.09% at the end of the linac. There is an additional
contribution from the short-range wakefield, and another contribution from quantum excitation of
the synchrotron radiation emitted in the positron production wiggler in the electron linac, but for
now we will neglect these contributions.

When a beam with a finite energy spread undergoes a betatron oscillation in a FODO lattice, the
particles with different energy oscillate with different betatron wavelengths due to the chromaticity
of the lattice. As a result, the particles with low and high energy no longer oscillate coherently
with one another, leading to emittance growth. As a general rule, it can be shown that a beam
which is launched down an infinitely-long FODO lattice with an initial offset of nσy and normalized
emittance γεy will reach the (infinitely-distant!) end of the lattice with a final offset of zero and a
final normalized emittance of γεy

√
1 + n2. Thus, a 1 σy initial offset translates to a 41% growth in

normalized emittance.
The result above suggests that we need to limit cavity pitches such that the resulting offset of

the beam at the end of the linac, calculated from linear optics, is less than about 1 σy,f . This is the
right order of magnitude, but it is actually more restrictive than is necessary. This is for several
reasons. First, the linac lattice is not infinite, so the breakdown in coherence of the oscillation
between the particles of different energies (known as filamentation) is not yet complete. Second,
unlike the case of an initial betatron oscillation, the oscillation described here actually builds up
gradually as the sum of individual cavity kicks; thus, a 1 σy final offset, driven by thousands of
small cavity kicks, is not as severe, from emittance growth point of view, as a 1 σy initial offset in
a perfectly-aligned linac. Even better, as the kick amplitude is growing, the RMS energy spread is
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adiabatically damping, leading to reduced sensitivity of the emittance to the betatron oscillation
(or, if you prefer, as the energy spread decreases the number of betatron oscillations needed to
achieve filamentation increases). Finally, in real life the trajectory of the beam centroid through
the accelerator is something that we can measure and control, via BPMs and correctors; thus,
ultimately it is the performance of the BPMs and correctors which will set the level of emittance
growth from sources such as the cavity pitch.

Nonetheless, we can use the “naive” estimate of the orbit deflections from cavity pitches, in
the absence of correction, to get a sense for the scale of the problem. Starting from Equation 13,
replacing sinψ with ψ and cosφ with 1, we find:

σ2
ψ

8

V 2
c

mec2

∑

cavities

βc
Ec

< γεy. (19)

Assuming a typical βc of 450 meters, this would yield a tolerance on the pitch angle ψ of about 1.4
microradians. While this estimate is both crude and “naive,” it demonstrates that the scale of cavity
tolerances which can be tolerated without correction is too small to achieve at installation, that
the tolerance becomes looser for stronger focusing, but that the emittance problem from pitched
cavities is too severe to have any hope of correcting it by simply reducing βc.

4 Quadrupole Misalignments

Like the cavity pitch error, misaligned quadrupoles lead to emittance growth from dispersion, since
a misaligned quadrupole deflects the beam and the deflection is inversely proportional to the energy
of the particle. We can recast Equation 13, replacing the deflection from the pitched RF cavity
with the deflection from the misaligned quadrupole:

∆y′q = −yqKqLq, (20)

where yq is the quad offset with respect to the accelerator axis, Kq is the normalized quad strength,
Kq = (dBq/dy)/Bρ, the sign of Kq is such that Kq > 0 is horizontally focusing and vertically
defocusing, and Bρ is the magnetic rigidity, Bρ = Eq/c. The resultant deflection at the end of the
linac is given by:

∆yf = −yqKqLq
√

βfβq

√

Eq
Ef

sin∆µq. (21)

We can make the same requirement here that we did for pitched cavities, specifically that the total
deflection at the end of the linac should be comparable to the nominal beam size. This leads us to
the naive criterion for emittance growth:

σ2
y,q

2mec2

∑

quads

(KqLq)
2βqEq < γεy. (22)

So far, this looks a lot like the expressions we have already seen, and seems to make similar
implications. However, this is not the case, and the reason it is different should be obvious: that βq,
the typical betatron function at the quadrupoles, is not independent of KqLq, the focusing strength
of the quadrupoles. We can make this explicit as follows: in a FODO lattice, the maximum betatron
function β+ and the minimum beta function β− can be written in terms of KqLq, the quad-to-quad
spacing Lqq, and the phase advance per cell µcell, as follows [3]:

β± =
1 ±

√

1 − cos2(µcell/2)

cos(µcell/2)KqLq
. (23)
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We can get an approximate sense of the scale of the problem by replacing βq in Equation 22 with
the mean of β+ and β−, and solving for KqLq in terms of the typical beta function and the cell
phase advance:

KqLq =
1

βt

1

cos(µcell/2)
. (24)

Now our criterion for emittance preservation becomes the following:

σ2
y,q

2mec2
1

βt

1

cos2(µcell/2)

∑

quads

Eq < γεy. (25)

Equation 25 is not entirely satisfying – for one thing, the parameters βt and µcell are implicitly
correlated because the quad-to-quad spacing is fixed in the ILC linac to 1 quad per 3 cryomodules
(or about 1 quad per 40 meters). Nonetheless, it does show us that, unlike the other issues we have
studied to date, the dispersive emittance growth from quad misalignments benefits from weaker
focusing – weaker focusing increases βt and drives cos2(µcell/2) towards its maximum value of 1.
Also of interest is that the impact of misaligned quads is stronger at the high-energy end of the
linac, whereas the impact of pitched or misaligned cavities is stronger at the low-energy end of the
linac.

To make this more concrete, let us consider again the linac with 450 meter typical betatron
functions and 280 quadrupoles. With a 40 meter quad spacing, the phase advance per cell is about
10◦ (see Appendix B to see how to do this calculation), the sum of Eq is 37,100 GeV, and Equation
25 shows that a quad alignment with respect to the survey line of better than 0.5 µm is needed to
limit the emittance growth due to quad misalignments. Again, this neglects the effects of steering
corrections, which reduce the emittance growth from dispersion, and is a substantial overestimate
due to the crude way in which the calculation was performed.

5 The ILC Main Linac Lattice

So much for the theory of single-bunch emittance preservation in a linear accelerator – how is the
ILC main linac designed to address these issues?

Figure 2 shows the betatron functions of the positron main linac. The phase advance per cell
is 75◦ in the horizontal, and 60◦ in the vertical, with typical betatron functions of 80 meters. As
shown in the discussion of Section 2.3, this is much smaller than the maximum tolerable betatron
function, which is around 450 meters. Therefore, we expect that emittance growth from wakefields
in a betatron oscillation will not be much of an issue for the ILC main linac.

Review of Equations 10, 18, 19, and 22 suggest that the “naive” tolerances will be approximately
as follows:

• Cavity misalignments: 1.4 mm RMS

• Cavity pitch (time-dependent kick): 4.6 mrad RMS

• Cavity pitch (dispersion): 3.3 µrad RMS

• Quad misalignments: 0.2 µm RMS.

As we can see, with these parameters it should be straightforward to limit the impact of cavity
misalignments and time-dependent kicks through careful construction and installation, since these
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tolerances are quite loose. On the other hand, the tolerances on growth from dispersion are ex-
tremely tight, even if the actual tolerances which must be achieved are several times larger than
the ones shown here.

One might wonder whether it makes more sense to try and increase the beta functions in the
linac, and relax the focusing, to try and loosen the quad misalignment tolerance in particular. The
answer is that it does not make sense. As we have seen, there is an upper limit on the betatron
function in the ILC linac, which is set by wakefields acting on a jittering beam. This limit is
only a few times larger than what was ultimately chosen, and would only result in an incremental
improvement in the required alignment tolerance (from 0.2 µm to 0.5 µm, for example). This is
too small an improvement to be worth making, given that the achievable vertical alignment of an
accelerator is certainly no better than 50 µm, and for a superconducting system is probably closer
to 300 µm, due to the movement and change in dimensions of the components as they are cooled
from room temperature to 2 K. Much better, therefore, to strengthen the beta functions enough to
correct the wakefield effects, which are otherwise difficult to fix by beam-based tuning, and leave
the quad misalignments (and the cavity pitches) with tight tolerances that can be corrected later
via beam-based tuning.

5.1 Aperiodicity of the Lattice

As Figure 2 shows, the betatron functions are not perfectly regular – there are periodic variations
(“beats”) in the optical functions. These are necessary due to the engineering requirements of such
a large cryogenic system. The ILC linac cryogenic system is broken into 2.5 km long subunits, each
of which is fed by a cryogenic plant on the surface. At the junction between these subunits is a
room-temperature drift and diagnostic section which disrupts the regularity of the linac layout. In
addition, the cryogenic fluids are distributed to cryomodules in segments of about 160 meters, and
therefore every 160 meters is an additional interruption to the regularity of the linac.

5.2 Vertical Curvature of the Linac

The “linear” in linear accelerator implies that the main accelerating component of the ILC should
be constructed in a straight line. In fact, the linear collider is not designed to be straight, but
rather to have a small curvature in the vertical plane. This curvature causes the linac to follow a
gravitational equipotential: to a good approximation, then, the vertical radius of curvature of the
linac is about the same as the mean radius of the Earth (typically taken to be 6370 km).

The purpose of this curvature is twofold. First, it vastly simplifies the distribution of superfluid
helium if there is no gravitational force pulling the helium from one point in the accelerator to
another point. Second, it allows the ILC tunnel to lie at a near-constant depth below the surface.
In the absence of this curvature, the center of the site would need to be much deeper than the far
ends. As an additional benefit, this method of construction means that the final length of the ILC
does not need to be known in advance, implying that an energy upgrade by “digging out” from the
center becomes feasible.

The vertical curvature is achieved by exciting the vertical steering correctors at each quadrupole.
Figure ?? (which is missing in this draft!) shows the resulting dispersion function, including all of
the “beating” due to lattice aperiodicity. The dispersion spikes at the beginning and end are places
where the correctors have been tuned to introduce and cancel the necessary vertical dispersion,
since the matched dispersion in the RTML and BDS injection are both zero.
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6 Steering, Alignment, and Emittance Preservation

As discussed in the previous section, the ILC main linac lattice design is acceptable on the topic of
emittance dilution from wakefields and time-dependent transverse kicks from pitched cavities, but
is very far from acceptable in terms of emittance growth from steering errors, most notably pitched
cavities and misaligned quadrupoles. For these errors, the typical tolerances are on the order
of micrometers and microradians, while the achievable installation tolerances for superconducting
components is probably closer to 300 µm or 300 µrad.

Fortunately, the ILC main linac has vertical steering dipoles at each quad, and a beam position
monitor (BPM) at each quad as well. This means that it is possible to correct the steering errors
which drive emittance growth in the linac, provided that one has a proper plan to take advantage
of these devices. We shall discuss several possible plans (or algorithms, if you prefer) for steering
in this section.

6.1 One-to-One Steering Correction

The simplest correction one could imagine applying to the linac is to simply use the correctors
to steer the beam such that all of the BPMs read zero. Since the number of BPMs is equal to
the number of correctors, this is often known as “one-to-one” steering. Because the number of
measurements equals the number of corrections, the system has a unique solution.

It is interesting to note that, in the limit where the BPMs are perfectly aligned to the nominal
accelerator axis, one-to-one steering will reduce the emittance growth almost to zero no matter
how badly the other components are misaligned. This is because any kick is corrected at the
nearest BPM; as a result, the misaligned quads, pitched cavities, and corrector magnets form a
complicated chicane, and the off-energy and on-energy trajectories will always meet at each BPM
in that case. Thus, the performance of one-to-one steering depends mainly on the alignment of the
BPMs themselves, and only to a very small degree on the alignment of the quads and cavities.

What happens if the BPMs are not perfectly aligned to the accelerator axis? Or, to change
the sense of the question, how well do the BPMs need to be aligned to the accelerator axis? To
get a sense of this, we will follow the approach of Ruth [5], considering an accelerator in which
everything is initially perfectly aligned except for one BPM, which has a misalignment yBPM. The
correctors immediately upstream of the BPM, immediately downstream of the BPM, and at the
BPM will all be excited to produce a closed bump such that the misaligned BPM reads zero, along
with all the other BPMs in the beamline. To good approximation, the nominal deflection angles of
the upstream and downstream correctors are given by:

θ−1,1 =
yBPM

Lqq
. (26)

The total kick angle at the BPM must obviously be −2yBPM/Lqq, but some of this deflection is
provided by the fact that the beam is passing off-axis through the quadrupole at the location of
the misaligned BPM, leading to a kick angle of θq = yBPMKqLq; therefore, the middle corrector
has a kick angle of θ0 = −2yBPM/Lqq − yBPMKqLq. Simple arithmetic will demonstrate that, at
the location of the downstream corrector, both the position and the angle of the centroid are zero.

Now consider the trajectory of an off-energy particle. The three correctors each produce a
deflection which differs from the nominal one by a factor of 1− δ. In the case of the deflection from
passing off-axis through the quad, the deflection differs from nominal by a factor of (1 − δ)2: one
factor of 1− δ comes from the fact that the quad strength, KqLq, is larger for low-energy particles,
and one comes from the fact that the position offset of the particles, driven by the kick angle of
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the first corrector, is also larger for low-energy particles. Adding the four terms and neglecting
contributions of order δ2, we find that an off-energy particle has an angle error from this system
given by:

∆y′ = −δyBPMKqLq. (27)

Computing the effect from the ensemble of BPMs, and requiring that the resulting displacement of
the off-energy particles be smaller than the beam size at the end of the linac, we find the following
criterion:

σ2
y,BPM

σ2
δE

2
0

2mec2
1

βt

1

cos2(µcell/2)

∑

quads

1

Eq
< γεy. (28)

As was the case for our unsteered linac, we find that the linac emittance preservation benefits from
a weaker lattice. Unlike in that previous case, we find here that the low-energy end of the linac
has a bigger impact on the overall emittance dilution. Substituting numbers for the current linac
design, we find that the BPM alignment tolerance is about 85 µm. This is clearly much better than
the alignment tolerances in the absence of steering, but is still about a factor of 4 tighter than what
is likely to be achieved at installation. Thus, we are forced to rely on somewhat more complex
methods for steering the linac to limit emittance growth.

6.2 Quad Shunting

Since a quad deflects a beam which passes off-axis through it, one can estimate the beam-to-quad
distance by varying the quad strength and observing the resulting change in orbit downstream of
the quad. The precision of this technique is set by the maximum change in quad strength which
is achievable while still transporting the beam, by the number, location, and resolution of the
downstream BPMs which perform the measurement, and by the number of beam pulses which
can be measured at each quad strength setting. Ultimately, there is a systematic limitation to
the achievable accuracy: this comes from the fact that the quad center can move when the quad
strength is varied, which results in a deflection which mimics the deflection of an off-axis beam
passing through a quad with varying strength. The systematic error can be roughly estimated as
[6]:

∆xQSfit = ∆xcenter

(

Kq

dKq

+ 1

)

, (29)

where Kq/dKq is the reciprocal of the fractional strength change used in the quad shunting pro-
cedure and ∆xcenter is the resulting motion of the quad center. For a system in which the quad
strength is reduced by 20%, this implies that the error in finding the beam-to-quad offset will be
four times as large as the unwanted motion of the quad center.

Once the beam-to-quad offsets are known, the BPM-to-quad offsets can be computed for each
BPM/quad package in the linac. This information can then be put to use in steering algorithms
such as Kick Minimization.

6.3 Kick Minimization

After Quad Shunting, the linac BPMs are well-aligned to the linac quads, but neither the quads
nor the BPMs are well-aligned to the nominal accelerator axis. We can make use of that correlation
in a subtle and fascinating way:

Imagine that, by accident or miracle, the linac gets steered in such a way that the beam is
exactly on the design axis for the entire length of the accelerator. In the absence of the kicks from
the pitched cavities, what we would find is that the beam goes off-center through the misaligned
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quads; the correctors at each quad are set such that the corrector kick exactly cancels the kick from
the nearby misaligned quad; and the BPM readings show a non-zero orbit at each BPM, since the
BPMs are perfectly aligned to the quads but the quads are misaligned to the beam. Putting all
this together, it means that there is a correlation between the BPM reading at each quad and the
corrector setting at each quad, and the correlation is a byproduct of the good alignment between
the BPM and the quad.

Quantifying the issue, in the case of the accidentally-perfect alignment we expect that, at each
quad/BPM/corrector location

yBPM,reading = −θcorrector
KqLq

. (30)

In this case, the net kick at each BPM is locally corrected, thus the name of the algorithm: “Kick
Minimization” (KM) [7].

In principle, we can imagine a steering solution in which we seek to zero the quantity yBPM,reading+
θcorrector/KqLq at all quad/BPM/corrector locations simultaneously. In practice, such a solution
is unstable in the presence of errors, since an erroneously-large value of yBPM,reading can be “bal-
anced” by a large value of θcorrector, leading to a large offset at the next BPM and therefore a
large corrector value at that location, and so on – a solution which tends to grow along the linac.
To provide stability against such errors, it is helpful to weakly constrain the absolute reading at
each BPM, so that such a growth is prohibited. This results in an overconstrained problem: the
number of constraints, considering both the absolute orbit constraint and the constraint on the
BPM readings plus the local corrector settings, is twice as large as the number of parameters (in
this case, corrector settings). Such problems are solved by forming an appropriately weighted χ2

and minimizing it as a function of the parameters. In this case,

χ2 =
∑

BPMs

y2
BPM,reading

σ2
y,BPM

+
∑

BPMs

(yBPM,reading + θcorrector/KqLq)
2

σ2
y,BtQ

, (31)

where σy,BPM is the RMS misalignment of the BPM with respect to the nominal accelerator axis,
and σy,BtQ is the RMS misalignment of the BPMs to the quads, based on the expected precision
and accuracy of the quad shunting technique.

In simulation studies, the minimization above is very effective in finding an orbit which achieves
a small emittance growth, provided that cavity pitch angles are neglected. When cavity pitches
are included, the optimal setting of each corrector changes: in addition to correcting the kick from
the nearest quad, each corrector needs to steer out the deflections from the cavities between the
corrector and the next downstream BPM. Since these deflections are not known, this modification
has the effect of increasing the denominator of the second term in the χ2. Studies of such advanced
steering methods are ongoing.

6.4 Dispersion Free Steering

Another option for correcting the trajectory to limit emittance growth from dispersion is to directly
measure the dispersion and to derive a set of corrector setttings which minimize it. This is known
as “Dispersion Free Steering” (DFS) [8].

More generally, the key to DFS is to generate a mismatch between the beam energy and the
optics of the lattice. This can be done by varying the actual beam energy (via changing the
RF system parameters) or by varying the magnet strengths, though this can introduce the same
strength-dependent variation in the quad center position which is a limitation for quad shunting.
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As with KM, the DFS solution is naturally unstable in the presence of errors, and must be
weakly constrained by simultaneously minimizing the measured orbit:

χ2 =
∑

BPMs

y2
BPM,reading

σ2
y,BPM

+
∑

BPMs

[∆ymeas − ∆ymodel(~θ)]
2

2σ2
res

, (32)

where σres is the BPM resolution, ∆ymeas is the measured change in BPM readings when the
energy match is varied, and ∆ymodel(~θ) is the expected change in the orbit, which is a function
of the corrector settings, ~θ. Depending on the details of how the DFS algorithm is configured, it
can be designed to properly manage the kicks from pitched RF cavities as well as the kicks from
misaligned quads or other effects, since it can be made into a direct measurement of the local
dispersion. Note that, in the case of a vertically-curved lattice, the model ∆y must include the
effects of the design dispersion function. In this case, “dispersion free steering” is not an accurate
name, and the technique is more often referred to as “dispersion matched steering” or simply
“dispersion steering.” Finally, it is important to note that in the presence of non-zero design
dispersion, the technique is not a classical “nulling” technique, which means that the BPM scale
factor becomes important as a potential source of systematic error.

6.5 Ballistic Alignment

In this technique, a straight-line, non-deflected beam-based reference is obtained by switching off
all magnets and RF cavities in the linac, or a portion of it, and measuring the BPM readings on all
BPMs. The devices are restored, and the beam is re-steered to the readings which were obtained
with all devices switched off. This is known as “ballistic alignment” (BA) [9].

The simplicity of BA is hard to beat, and it obviously manages misaligned quads and pitched
cavities simultaneously. The main limitations to this are systematic: the degree of certainty that
the devices are all truly off, with no remnant fields; the effect of stray electromagnetic fields on the
nominally-ballistic initial orbit; potential difficulties in transporting the beam through long sections
of deactivated beamline.

6.6 Dispersion Bumps

In Section 6.1, we saw that introducing a closed bump around a quadrupole produces a nonzero
dispersion. We can make use of this to deliberately introduce a given amplitude and phase of
dispersion, in order to globally cancel dispersion from one or more unknown sources. The resulting
“dispersion bump” is varied in size until the emittance measured at the end of the linac is minimized.

Emittance bumps have limited effectiveness due to filamentation and high-order dispersion
effects. Thus, they are typically used as an “afterburner” applied to a system which has been
corrected with a good, but not perfect, steering solution.

7 Long-Range Transverse Wakefields

In Section 2, we reviewed the beam dynamics of short-range transverse wakefields, which act within
a single bunch – deflecting the tail based on the transverse position of the head. The short-range
wakefield is the sum of the transient excitation of an infinite number of deflecting modes, similar
to the way in which the short-range longitudinal wakefield is the sum of an infinite number of
accelerating modes.

As we have seen previously, the Q of a superconducting accelerating cavity is proportional to
ω−2. This means that, for extremely high frequencies, the Q is very low and the mode quickly
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damps away. Nonetheless, for a large number of low-frequency modes, typically modes which in
the same frequency regime as the fundamental accelerating mode (1.3 GHz), the Q can remain
quite high for the deflecting modes. This means that the modes which are excited by one bunch
can remain in a cavity when the next bunch arrives. These are the higher-order modes (HOMs),
or long range transverse wakefields, of an accelerating cavity.

Because the HOMs can have high Q values, and very limited damping between bunches, it is
possible for the HOMs in a cavity to be excited by all of the bunches in a train. The excitation is
generally not “resonant,” that is, the frequency of the HOMs is generally not harmonically related
to the bunch interval, so the HOMs which are driven by a bunch are generally different in phase
from the HOMs which are left in the cavity by previous bunches. Nonetheless, the amplitude of the
HOM can build up over time, resulting in a deflection of late bunches which is much larger than the
deflection of early bunches. In addition, a bunch train which is executing a betatron oscillation will
excite HOMs in all of the cavities in the linac, leading to a deflection amplitude that grows with S
along the accelerator as well as growing from bunch to bunch within a train. If, at the end of the
linac, the deflection of trailing bunches exceeds the amplitude of the initial betatron oscillation, the
dread “beam break-up instability” (BBU) can occur.

7.1 Managing Higher Order Modes

The techniques for managing higher-order modes are well-understood and have been for several
decades. The fundamental techniques are damping and detuning. We will briefly describe each of
these techniques.

7.1.1 Damping

The most damaging higher order modes, in terms of beam dynamics, are the ones which have the
lowest frequencies: in the case of the ILC cavities, modes in the frequency band from 1.3 GHz to 4.0
GHz are typically of greatest concern. Ideally, we would like the excitation of these modes which
is generated by one bunch to vanish by the time the next bunch arrives 369 nanoseconds later. In
order to reduce the stored energy in these modes to 1/e of their peak values in this time, the Q
values for the modes must be around 5 × 103.

As we have seen, the wall Q for modes in this frequency range is likely to be vastly larger than
the desired 5 × 103 level, due to the inconvenient (in this context) fact that the cavity walls are in
a superconducting state. Fortunately, we can take a lesson from the fundamental mode, in which
the wall Q is around 2 × 1010 but the Q with the fundamental mode coupler is closer to 3 × 106.
This suggests that we should, essentially, cut a hole in the cavity which the HOM power can leak
out of, and then provide it with some sort of cooled load which can safely absorb it. In fact, this is
more or less exactly what is done – a set of higher order mode couplers are attached to the cavity
to reduce the loaded Q of the dipole modes to something closer to the desired level. An additional
constraint on the HOM couplers is that they should reject the fundamental mode at 1.3 GHz, i.e.,
the fundamental mode should not be coupled to, or damped, any more than is necessary.

The ILC design incorporates HOM couplers at the upstream and downstream end of each cavity.
In addition, there is a HOM load incorporated into the vacuum system near each quadrupole in
the linac, which serves to absorb HOM power which is at frequencies high enough to propagate
freely down the linac (i.e., frequencies above the cutoff of the cavity irises and the beam pipe). The
HOM couplers do not achieve the full measure of damping which would be required to produce
one e-folding between bunch arrivals: the Q values for the lowest modes are typically between 104

and 105 [10]. Figure 3 shows the spectrum of RF power which is removed from an ILC cavity via
the cavity’s HOM couplers. Note that the 1.3 GHz fundamental mode line can be seen in this
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plot; however, while the excitation from the fundamental mode is larger than the excitation from
the HOMs, the actual coupling of the coupler to the fundamental is quite small, as required; the
excitation from the fundamental is so large because the fundamental mode has vastly more stored
energy than the HOMs.
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Figure 3: Spectrum of RF power detected in the HOM couplers of an ILC RF cavity. Not all of the
lines represent real HOMs, as there are a number of instrumentation artifacts in the signal. Figure
courtesy of S. Molloy.

It is interesting to note that, for a mode with a frequency of 4 GHz and a Q of 105, the e-folding
time is 4 microseconds. This implies that in 36 microseconds, the deflecting voltage left by the first
bunch has fallen to 1% of its maximum value – in essence, the deflecting field from the first bunch
is lost within a few tens of microseconds. Since the bunch train is about 1 millisecond long, we
expect that, when the HOM damping is included, the distortions to the bunch train trajectories
from HOMs will reach a “steady state” within 5-10% of the bunch train length.

7.1.2 Detuning

As described above, the damping of the HOMs provided by the HOM coupler is not sufficient to
remove all the HOM power in a time comparable to the bunch spacing, and so prior to the onset
of steady-state deflections the beam dynamics effects of the HOMs can be substantial. Since it is
impractical to add additional damping, another technique must be used to limit the multi-bunch
emittance growth during the first 50-100 microseconds of the bunch train.
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One option is to detune the HOMs in the various cavities with respect to one another. HOM-
driven beam break-up is caused by resonant excitation: a bunch train receives exactly the same
wakefield kick in each of a large number of cavities, leading to a buildup of small kicks to a large
total deflection. This can be mitigated by adjusting the frequencies of the HOMs such that they
are slightly different in each cavity. When summed over all cavities, the resulting kicks will quickly
tend to cancel out rather than add coherently.

It is expected that in the ILC cavities, errors in the cavity construction will lead to frequency
shifts from nominal, with an RMS of about 10−3 [11]. Since the frequencies of interest are at the
GHz level, the cumulative “line width” of each of the detuned HOMs, when considered over the
length of the linac, is around 1 MHz. This implies a fall-off of the wakefield in a time comparable
to 1 microsecond, which is sufficient to limit the amount of multi-bunch emittance growth in the
50-100 microseconds prior to the onset of steady-state.

Given that we expect to achieve a fall-off time of 1 microsecond using natural detuning, what
is the purpose of adding damping as well, given that damping does not take full effect until after
some tens of microseconds? The damping is required because the detuned wakefields will recohere
after some time – that is, the deflections of trailing bunches would be reduced due to detuning,
and then would suddenly shoot back up to an unacceptable level as the detuned modes got back
into phase with one another. Addition of damping ensures that the recohered wakefields will be at
a sufficiently low amplitude to prevent unacceptable multi-bunch emittance dilution.
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A Computing the Emittance Growth Due to Wake-Driven Motion

of the Bunch Tail

In Section 2, we set a limit on the permitted misalignments of the RF cavities such that the
tail motion driven by transverse wakefields is equal to the nominal beam size. How much actual
emittance growth does that correspond to?

Consider a two-slice model, as used in Section 2, with one leading and one trailing slice, where
each slice has full transverse coordinates (x, x′, y, y′), but each slice has zero length and zero energy
spread. Each slice contains N particles. Transverse wakefields do not deflect the leading slice, but
the trailing slice is deflected by σy,f at the end of the linac. We would like to estimate the resulting
beam size and emittance growth, so we should start by estimating the mean-squared beam size:

σ2
y =< y2 > − < y >2 . (33)

Let us start by estimating < y2 > for this ensemble. We can write this as:

< y2 >=
1

N

[

∑

y2
1 +

∑

y2
2

]

, (34)

where y1 and y2 are variables representing the positions of particles in the leading and trailing
slices, respectively. We can replace y1 with a Gaussian-distributed variable with RMS width σy;
we can also replace y2 with σy + ∆y2, where the first term is the offset of the slice and the term
∆y2 is a Gaussian-distributed variable with RMS width σy. This implies that

< y2 >=
1

N

[

N

2
σ2
y +

∑

(σy + ∆y2)
2

]

. (35)

Expanding the sum, the cross-term between σy and ∆y2 vanishes, leaving:

< y2 >=
1

2
σ2
y +

1

N

∑

(σy + ∆y2)
2 =

3

2
σ2
y. (36)

Meanwhile, the value of < y > is trivially σy/2, therefore:

σ2
y =

3

2
σ2
y −

1

4
σ2
y =

5

4
σ2
y. (37)

If we assume that the dilution of the beam size is uniformly distributed to all betatron phases, then
both the σ2

y and σ2
y′ are increased by the same factor of 25%, leading to an emittance growth of

25% from the 1 σy and 1 σ′y deflection of the tail.
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B Calculating the Phase Advance per Cell from βt and Lqq

Given the quad-to-quad spacing Lqq and the typical betatron function value βt, how does one
compute the resulting phase advance per cell? To solve this we follow the approach of Wiedemann
[4].

Start with a few definitions: b ≡ βt/Lqq, and κ ≡ 1/(KqLqLqq). The phase advance relation is

sin(µcell/2) = 1/κ, (38)

and the relation between b and κ is:

b =
κ2

√
κ2 − 1

. (39)

This allows us to write and solve a quadratic equation for κ2, which has as its solution:

κ2 =
b2 +

√
b4 − 4b2

2
. (40)

This allows solution for κ, which leads directly to a solution to µcell via Equation 38.
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