Exercises in the lectures on
 " Superconducting RF - I and - II "

Kenji Saito, KEK

Exercise I.

Using the Abrikosov's theory:

$$
\begin{aligned}
& H_{c}=\frac{\kappa}{\lambda^{2}} \frac{\hbar c}{\sqrt{2} e^{*}}=\frac{\kappa}{\lambda^{2}} \frac{(h c / 2 e)}{2 \pi \sqrt{2}}=\frac{\phi_{0}}{2 \pi \sqrt{2} \lambda \xi}, \quad H_{c 2}=\sqrt{2} \frac{\lambda}{\xi} \frac{\phi_{0}}{2 \pi \sqrt{2} \lambda \xi}=\frac{\phi_{0}}{2 \pi \xi^{2}} \\
& \begin{aligned}
\phi_{0} & =h c / 2 e
\end{aligned}=2.0678 \times 10^{-7} \text { Gauss } \cdot \mathrm{cm}^{2} \\
& \\
& =2.0678 \times 10^{-15} \mathrm{~T} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

1) write down ξ, λ by H_{C} and $H_{C 2}$,
2) get the T-dependences of $\xi, H_{C 2}, \kappa, H_{C}{ }^{R F}$, from the given T-dependences of λ and H_{C} :

$$
\begin{aligned}
& H_{C}(T)=H_{C}(0)\left[1-\left(T / T_{C}\right)^{2}\right], \lambda(T)=\frac{\lambda(0)}{\sqrt{1-\left(T / T_{C}\right)^{4}}} \\
& \text {,here } \mathrm{H}_{\mathrm{C}}^{\mathrm{RF}} \text { is given as } \mathrm{H}_{\mathrm{C}}^{\mathrm{RF}}=\sqrt{2} \cdot \frac{\mathrm{H}_{\mathrm{C}}}{\kappa} .
\end{aligned}
$$

Exercise II.

1) Get the following formula for the surface resistance Rs for good electric conductor.

$$
\mathrm{R}_{\mathrm{s}}=\sqrt{\frac{\mu \omega}{2 \sigma}}=\frac{1}{\sigma} \sqrt{\frac{\mu \sigma \omega}{2}}=\frac{1}{\sigma \delta}
$$

2) Calculate the δ and R_{S} for a 1300 MHz copper cavity, when the σ is given as $1 / \sigma=1.72 \mathrm{E}-8[\Omega \mathrm{~m}]$ at $20^{\circ} \mathrm{C}$.
3) If the RRR of the copper material is 40 , calculate the Rs at 4.2 K .

Exercise III.

By the two fluid model, electric conductivity is given as the bellow:

$$
\mathbf{J}=\left(\frac{n_{n} e^{2}}{\mathrm{v} m_{e}}-i \frac{n_{s} q_{s}^{2}}{\omega m_{s}}\right) \mathbf{E}=\sigma E, \quad \sigma=\sigma_{\mathrm{n}}-i \sigma_{s}
$$

Put this complex electric conductivity into the formula of surface impedance: $Z=R_{S}+i X_{S}$, show the surface resistance and admittance for superconductor are:

$$
R_{S}=\frac{1}{2} \sigma_{n} \omega^{2} \mu^{2} \lambda_{L}^{3}, \quad X_{S}=\omega \mu \lambda_{L} \quad \text { and } \sigma_{n}=\frac{n_{n} \cdot e^{2}}{\mathrm{~V} \cdot m_{S}}
$$

n_{n} is the number of unpaired electrons (quatsi particle), then it could be written by Boltzman statistics as:

$$
\sigma_{n}=\frac{e^{2}}{m \cdot \mathrm{v}} n_{s}(0) e^{-\frac{\Delta}{k_{B} T}}
$$

Show the formula of surface resistance in case of superconductor as:

$$
R_{S}(T, f)=A\left(\lambda_{L}, \xi, \ell, T_{C}\right) \cdot f^{2} \cdot \exp \left(-\frac{\Delta}{k_{B} T}\right)
$$

Exercise IV.

Get the formulas in lecture note p. 65

$$
\begin{aligned}
& \mathbf{B}_{t}=\frac{1}{\left(\varepsilon \mu \frac{\omega^{2}}{c^{2}}-k^{2}\right)}\left[\nabla_{t}\left(\frac{\partial B_{z}}{\partial z}\right)+i \varepsilon \mu \frac{\omega}{c} \mathbf{e}_{z} \times \nabla_{t} E_{z}\right], \\
& \mathbf{E}_{t}=\frac{1}{\left(\varepsilon \mu \frac{\omega^{2}}{c^{2}}-k^{2}\right)}\left[\nabla_{t}\left(\frac{\partial E_{z}}{\partial z}\right)-i \frac{\omega}{c} \mathbf{e}_{z} \times \nabla_{t} B_{z}\right]
\end{aligned}
$$

Exercise V.

Make design a $1300 \mathrm{MHz} \mathrm{TM}_{010}$ - mode single cell Pill Box cavity 1.What is the diameter of the cell?
2. What is the cell length?

Exercise VI.

$$
\begin{aligned}
& \text { Superfish outputs } \\
& \\
& \mathrm{f}_{0}=\mathbf{1 2 9 3 . 7 7 4 3 0 \mathrm { MHz }} \\
& \mathrm{Ploss}=118.1551 \mathrm{~W} \\
& \mathrm{Rs} Q=265.171 \Omega \\
& \mathrm{Q}=\mathbf{2 8 2 5 7 . 6} \\
& (\mathrm{Rsh} / \mathbf{Q})=109.24 \Omega \\
& \mathrm{Hp}==1753.44 \mathrm{~A} / \mathrm{m} \\
& \mathrm{Ep}=\mathbf{0 . 9 4 6 1 7 6 ~ M V} / \mathrm{m}
\end{aligned}
$$

Calculate the following cavity RF parameters from above Superfish outputs.

Rsh $[\Omega]=$
Accelerating Voltage V [MV]= RF wave length $\lambda[\mathrm{m}]=$
Gradient Eacc $=\mathbf{V} / \mathbf{L}_{\text {eff }}[\mathbf{M V} / \mathbf{m}]=$
,defined as $L_{\text {eff }}=\lambda / 2$
$\mathrm{Hp} / \mathrm{Eacc}[\mathrm{Oe} /(\mathbf{M V} / \mathrm{m})]=$
, use $1 \mathrm{~A} / \mathrm{m}=4 \pi 10^{-3} \mathrm{Oe}$
Ep/Eacc =
Eacc $[\mathrm{MV} / \mathrm{m}]=\mathbf{P}^{\mathcal{A}} \mathbf{E}^{\mathrm{P}} \cdot \boldsymbol{R P}^{2} \quad \mathrm{Z}=$
Geometrical factor $\Gamma[\Omega]=$

Exercise VII.

Calculate the cable correction factors: $\mathrm{C}_{\mathrm{in}}, \mathrm{C}_{\mathrm{r}}$ and C_{t},
when measurement results are:
$p_{\text {in }}=55.5 \mu \mathrm{~W}, p_{0}=50.0 \mathrm{~mW}, p_{\mathrm{r}}=10.72 \mu \mathrm{~W}, p_{\mathrm{t}}=3.04 \mathrm{~mW}$
and
$p_{0}{ }^{\prime}=39.0 \mathrm{~mW}, p_{\text {in }}{ }^{\prime}=22.6 \mathrm{~mW}, p_{t}^{\prime}=27.9 \mathrm{~mW}$

Exercise VIII.

Calculate $\beta \mathrm{in}^{*}, \boldsymbol{\beta i n}, \beta t, \mathbf{P}_{\text {loss }}[\mathbf{W}]^{\prime}, \mathbf{Q}_{\mathrm{L}}, \mathbf{Q}_{\mathrm{in}}, \mathbf{Q}_{0}, \mathbf{Q}_{\mathrm{t}}, \mathrm{R}_{\mathrm{s}}[\Omega]$,
Eacc $[M V / m], E_{p}[M V / m]$, and $H_{p}[O e]$,
when measure results are :
$\mathrm{f}_{0}=\mathbf{1 3 0 3 . 5 9 0 5 2 9 M H z}$,
$\tau_{1 / 2}=23.6 \mathrm{msec}$,
coupling over,
$p_{\text {in }}=3.11 \mathrm{~mW}, p_{r}=192 \mathrm{nW}, p_{t}=0.142 \mathrm{~mW}$.
For the cable correction factors, use the results of the exercise VII. RF cavity parameters are given as following: $\Gamma=\mathbf{2 6 9 \Omega}$, Ер/Eacc=1.83, Hp/Eacc=45.2 Oe/[MV/m], and $\operatorname{Eacc}[M V / m]=86.94 \sqrt{P_{t}[W] \cdot Q_{t}}$

