Superconducting RF-I - Basics for SRF Cavity -

K.Saito KEK

- **1. Superconductivity Basics**
- **2. Niobium Material**
- **3. SRF Cavity Design**
- 4. HOM Issue
- **5. Lorentz Detuning**
- 6. RF input coupler
- 7. Cavity Dressing
- 8. Cryomodule
- 9. Cryogenics

ILC 2nd Summer School Lecture Note

1

K.Saito

1. Superconductivity Basics

Microscopic Theory

Critical magnetic field measurement

Example of demagnetization curve on Niobium (NingXia, Large Grain RRR=340)

Abrikosov's Theory for Type-II

Dorturbation theory T. To

$$H_{c} = \frac{\kappa}{\lambda^{2}} \frac{\hbar c}{\sqrt{2e} *} = \frac{\kappa}{\lambda^{2}} \frac{(\hbar c/2e)}{2\pi\sqrt{2}} = \frac{\phi_{0}}{2\pi\sqrt{2}\lambda\xi}$$

$$H_{c} = \frac{\kappa}{\lambda^{2}} \frac{\phi_{0}}{\sqrt{2e} *} = \frac{\phi_{0}}{2\pi\xi^{2}}$$

$$H_{c1} = \frac{\phi_{o}}{4\pi\lambda^{2}} \ln(\frac{\lambda}{\xi} + 0.08)$$

$$\phi_{0} = \hbar c/2e = 2.0678 \times 10^{-7} Gauss \cdot cm^{2}$$

$$= 2.0678 \times 10^{-15} T \cdot m^{2}$$
Exercise I.
Show the formulas for ξ, λ by Hc,Hc2.
Get the T-dependences for $\xi, H_{c2}, \kappa, H_{c}^{RF}$.

$$= 2.0678 \times 10^{-15} T \cdot m^{2}$$
Expand for all T range (assumption)

$$\xi(T) = \xi(0) \cdot \sqrt{\frac{1 + (T/T_{c})^{2}}{1 - (T/T_{c})^{2}}} \quad \kappa(T) = \frac{\kappa(0)}{1 + (T/T_{c})^{2}}$$

T-dependence of λ and ξ

Lab material, RRR>2000

Checking of the model for other materials

What material is best for SRF cavity?

Material point of view:

- Smaller heat loading for refrigerator \longrightarrow Higher T_C
- High gradient $H_{RF} > H_C^{RF}$, then normal conducting $H^{RF} = \sqrt{2} \cdot \frac{H_C}{H_C}$ is the formula of the second second

$$H_c^{RF} = \sqrt{2} \cdot \frac{H_c}{\kappa}, \kappa : G - L \text{ parameter}$$

This is very much different from superconducting magnet

The material with higher Hc and smaller κ -value If Hc is high enough, Type-I material is better because of the smaller κ -value.

Good formability

Materials	Tc [K]	Hc,	Hc1	Туре	Fabrication
		[Gauss]			
Pb	7.2	803		Ι	Electroplating
Nb	9.25	1900,	1700	Π	Deep drawing, film
Nb3Sn	18.2	5350,	300	II	Film
MgB2	39	4290,	300	II	Film

Niobium has higher Tc, Hc and enough formability.

Now, niobium is widely used for RF sc cavity production.

Surface resistance of normal conducting Case

Maxwell Equations for conductor (ϵ , μ , $\rho = 0$)

$$\nabla \cdot \vec{B} = 0, \ \nabla \times \vec{E} + \mu \frac{\partial \vec{H}}{\partial t} = 0$$
$$\nabla \cdot \vec{D} = 0, \ \nabla \times \vec{H} - \varepsilon \frac{\partial \vec{E}}{\partial t} - \sigma \vec{E} = 0$$
$$\vec{J} = \sigma \vec{E} \quad \text{(Ohm's Law)}$$

$$\vec{\mathrm{E}}(\vec{\mathrm{x}},t) = \vec{\mathrm{E}}_{\ell}(\vec{\mathrm{x}},t) + \vec{\mathrm{E}}_{t}(\vec{\mathrm{x}},t),$$

$$\vec{\mathrm{H}}(\vec{\mathrm{x}},t) = \vec{\mathrm{H}}_{\ell}(\vec{\mathrm{x}},t) + \vec{\mathrm{H}}_{t}(\vec{\mathrm{x}},t)$$

From Maxwell Equation,

$$\frac{\partial \vec{H}_{\ell}}{\partial t} = 0, \quad \vec{E}_{\ell}(x,t) = \vec{E}_{\ell}(0) \cdot e^{-\frac{\sigma t}{\varepsilon}}$$

For the transvers,

Plane wave : $\vec{E}_t(\vec{x},t) = \vec{E}_t(0) \cdot \exp(i\vec{k} \cdot \vec{x} - \omega t)$

$$\vec{H}_{t}(\mathbf{x},t) = \frac{1}{\mu\omega} [\vec{k} \times \vec{E}_{t}(\vec{x},t)],$$
$$[k^{2} - (\varepsilon\mu\omega^{2} + i\mu\omega\sigma)] \begin{cases} \vec{E}_{t}(\vec{x},t) \\ \vec{H}_{t}(\vec{x},t) \end{cases} = 0$$

Normal Conducting Case, continued

Surface resistance in superconductor (Two Fluid model)

General equation:
$$m \frac{\partial \mathbf{v}}{\partial t} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) - mv \mathbf{v}$$

Two-fluid model by Gorter and Casimir in 1933
 $\mathbf{J} = \mathbf{J}_s + \mathbf{J}_n$, $\mathbf{J}_s = n_s q_s \mathbf{v}$, $\mathbf{J}_n = n_n q_n \mathbf{v}$

Maxwell equation: neglecting the Lorentz term, $\mathbf{v} \times \mathbf{B} \ll 1$

$$m_{s} \frac{\partial \mathbf{v}_{s}}{\partial t} = q_{s} \mathbf{E} , \quad m_{s} = 2m_{e} , \quad q_{s} = -2e$$

$$m_{e} \frac{\partial \mathbf{v}_{n}}{\partial t} = q_{n} \mathbf{E} - m_{e} v \mathbf{v}_{n} , \quad q_{n} = -e$$

$$\mathbf{E} = \mathbf{E}_{0} e^{i\omega t} \Rightarrow \mathbf{J}_{s} = \frac{n_{s} q_{s}^{2}}{i\omega m_{s}} \mathbf{E} , \quad \mathbf{J}_{n} = \frac{n_{n} q_{n}^{2}}{i(\omega - iv)m_{e}} \mathbf{E}$$

$$\mathbf{J} = \left(\frac{n_{s} q_{s}^{2}}{i\omega m_{s}} + \frac{n_{n} e^{2}}{i(\omega - iv)m_{e}}\right) \mathbf{E}$$

$$v \gg \omega \Rightarrow \mathbf{J} = \left(\frac{n_{n} e^{2}}{v m_{e}} - i \frac{n_{s} q_{s}^{2}}{\omega m_{s}}\right) \mathbf{E} = \sigma E, \quad \sigma = \sigma_{n} - i\sigma_{s} \Rightarrow \mathbf{R}_{s} = \sqrt{\frac{\mu\omega}{2\sigma}}$$

K.Saito

ILC 2nd Summer School Lecture Note 24

Calculation of thermal conductivity based on Quantum mechanics

$$\kappa_{s}(T) = R(y) \cdot \left[\frac{\rho_{205K}}{L \cdot RR \cdot T} + a \cdot T^{2} \right]^{-1} + \left[\frac{1}{D \cdot \exp(y) \cdot T^{2}} + \frac{1}{BIT^{3}} \right]^{-1}$$
e-impurities scatt. e- phonons scatt. lattice - phonons scatt. lattice - grain boundaries scatt.

$$L = 2.05E - 8, RRR = 200, \rho_{295K} = 14.5E - 8 \Omega m, a = 7.52E - 7$$

$$-y = \alpha \cdot \frac{T_{c}}{T}, \alpha = 1.53, T_{c} = 9.25K, T \le 0.6 \cdot T_{c}$$

$$D = 4.27E - 3, B = 4.34E3, l = 50\mu m$$

$$R(y) = \frac{\kappa_{es}}{\kappa_{en}} = \frac{2F_{1}(-y) + 2y \ln(1 + e^{-y}) + \frac{y^{2}}{(1 + e^{y})}}{2F_{1}(0)}, \frac{y}{k^{1}} \frac{0.00}{0.000}$$

$$F_{n}(-y) = \int_{0}^{\infty} \frac{z^{n}}{1 + e^{z+y}} dz$$
K.Saito ILC 2nd Summer School Lecture Note 27

History of RRR improvement in a Nb production Company

2. Niobium Material

2.1 Niobium Mien2.2 High Purity Niobium Industrial Production

K.Saito

ILC 2nd Summer School Lecture Note

A Niobium Mien

EBM furnace and Nb Ingots

K.Saito

ILC 2nd Summer School Lecture Note

Gas analysis in niobium

Rolling

Careful control against dust

K.Saito

ILC 2nd Summer School Lecture Note

Vacuum annealing system

Tokyo Denkai 1400°C Max, ~1x10⁻⁶ Torr Effective working zone 1000\phi x 1800L Ta heater

K.Saito

ILC 2nd Summer School Lecture Note

High Pure Niobium Sheets

Tokyo Denkai

Improvement of RRR at Tokyo Denkai

Tensile Test

Tokyo Denkai

3. SRF RF Cavity Design

3.1 Single Cell Cavity Design3.2 Criteria General for Cavity Shape3.3 Criteria for Multi-cell Structures

What is RF cavity ?

Principle of RF acceleration TM-mode : Ez 0, Bz=0, frequency: f TM₀₁₀ - mode, -mode, Standing Wave V(electron velocity) ~ C(light velocity) L(cell length) = $\lambda/2$; λ (wave length)=C/f If the velocity is low like protons, β =V/C < 1, then L= $\beta\lambda/2$

RF Cavity: accelerates charged particles by the electric field synchronized with RF frequency.

ILC 2nd Summer School Lecture

TM- mode Assign

TM-mode:
$$B_z = 0, E_z \neq 0$$
 \Longrightarrow Can accelerate beam Beam
 $B_t = \frac{i\varepsilon\mu\frac{\omega}{c}}{\left(\varepsilon\mu\frac{\omega^2}{c^2} - k^2\right)} [e_z \times \nabla_t E_z],$
 $E_t = \frac{1}{\left(\varepsilon\mu\frac{\omega^2}{c^2} - k^2\right)} \nabla_t \left(\frac{\partial E_z}{\partial z}\right),$
 $\left[\nabla_t^2 E_z + (\varepsilon\mu\frac{\omega^2}{c^2} - k^2)\right] E_z = 0,$ \Longrightarrow Solve the eigenvalue problem, get k and Ez

Boundary condition $E_z|_{S} = 0$ (\because $\mathbf{n} \times \mathbf{E} = 0$ on the surface of perfect conductor) $\frac{B_z}{n}|_{S} = 0$ (\because $\mathbf{n} \cdot \mathbf{B} = 0$ on the surface, but automatically satisfied by the TM - mode condition)

Boundary condition $E_z|_S = 0$ (\therefore $\mathbf{n} \times \mathbf{E} = 0$ on the surface of perfect conductor but automatically satisfied by the TE- mode condition) $B_z|_{Z_z} = 0$ (\therefore $\mathbf{D} = 0$ and $\mathbf{E} = 1$

$$\frac{B_z}{n}\Big|_S = 0 \ (\because \mathbf{n} \cdot \mathbf{B} = 0 \text{ on the surface})$$

60

Eigevalue problem

 $\psi(x,y) = E_z(x,y)$ for TM-mode or $B_z(x,y)$ for TE-mode $(\bar{\nabla}_t^2 + \gamma^2)\psi = 0$, $\psi|_S = 0$ (for TM - mode) or $-\frac{1}{n}\psi|_S = 0$ (for TE - mode)

$$\gamma^2 = \varepsilon \mu \frac{\omega^2}{c^2} - k^2 \ge 0$$

From the boundary condition,

$$\gamma^2 = \gamma_{\lambda}^2, \ \psi = \psi_{\lambda} \quad (\lambda = 1, 2, \cdots)$$

$$k_{\lambda}^2 = \varepsilon \mu \frac{\omega^2}{c^2} - \gamma_{\lambda}^2$$

If $\omega < c \frac{\gamma_{\lambda}}{\sqrt{\epsilon \mu}}$, then k_{λ} is an imaginal number. The wave is damped in the waveguide.

$$\omega_{\lambda} = c \frac{\gamma_{\lambda}}{\sqrt{\varepsilon \mu}} \cdots \text{cutoff frequency}$$

When $\omega \ge \omega_{\lambda}$, wave number k_{λ} is a real number,

then the wave can propagate into the waveguide.

TM-mode in a Pill Box Cavity

TM-modes

 $\mathbf{E}(x, y, z, t) = \mathbf{E}(x, y) \exp(ikz - i\omega t)$

When shorted at z = 0 and z = d, then the wave makes a standing wave.

 $\therefore \mathbf{E}(x, y, z, t) = [\mathbf{A}(x, y)\cos(kz) + \mathbf{B}(x, y)\sin(kz)]\exp(-i\omega t)$

If the cavity is made from perfect conductor, $E_t = 0$ at z = 0 and d.

 $\therefore \mathbf{E}(x, y, z) = \mathbf{B}(x, y)\sin(kz) \text{ and } \sin(kd) = 0 \Rightarrow kd = p\pi(p = 0, 1, 2, \dots) \Rightarrow k = \frac{p\pi}{d}$ $\mathbf{E}_{z}(x, y, z) = \Psi(x, y, z)\mathbf{e}_{z} = \left[\mathbf{A}_{z}(x, y)\cos(kz) + \mathbf{B}_{z}(x, y)\sin(kz)\right]\mathbf{e}_{z}$ $\mathbf{E}_{t}(x, y, z, y) = \frac{1}{\gamma^{2}}\nabla_{t}\left(\frac{\partial\Psi}{\partial z}\right), \text{ and the boundary condition: } \mathbf{E}_{t} = 0 \text{ at } z = 0.$

$$\Rightarrow \Psi = B_z(x, y)\cos(kz) = B_z(x, y)\cos(\frac{p\pi}{d}z)$$

Now one can solve the eigenvalue problem.

$$\left(\nabla_{t}^{2} + \gamma^{2}\right)\Psi = 0, \ \gamma^{2} = \varepsilon\mu\frac{\omega^{2}}{c^{2}} - k^{2} = \varepsilon\mu\frac{\omega^{2}}{c^{2}} - \left(\frac{p\pi}{d}\right)^{2}$$

Cylindorical cordinate $(r, \theta, z), \ \Psi \to \Psi = B_{z}(r, \theta)$
$$\left(\nabla_{t}^{2} + \gamma^{2}\right)\Psi = \left(\frac{\partial^{2}}{\partial^{2}r} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^{2}}\frac{\partial^{2}}{\partial^{2}\theta}\right)\Psi + \gamma^{2}\Psi = 0$$

$$\Psi(r, \theta) = R(r) \cdot \Theta(\theta)$$

$$r^{2} \frac{\partial^{2} R(r)}{\partial^{2} r} + \frac{r}{R(r)} \frac{\partial R(r)}{\partial r} + \gamma^{2} r^{2} = -\frac{1}{\Theta(\theta)} \frac{\partial^{2} \Theta(\theta)}{\partial^{2} \theta}$$
$$-\frac{1}{\Theta(\theta)} \frac{\partial^{2} \Theta(\theta)}{\partial^{2} \theta} = m^{2} \Rightarrow \Theta(\theta) = \Theta_{0} \exp(\pm im\theta), m = 0, 1, 2, \cdots$$
$$\Theta \text{ is for a single-value function at } \theta = 0 \sim 2\pi.$$
$$\rho = \gamma r,$$

$$\frac{\partial^2 R}{\partial^2 \rho} + \frac{1}{\rho} \frac{\partial R}{\partial \rho} + (1 - \frac{m^2}{\rho^2})R = 0 \Longrightarrow R : mthBesselfunction(J_m)$$

For no divergence at $\rho = 0 \Rightarrow R(\rho) = J_m(\rho)$

Boundary condition: $E_z(r,\theta) = 0$ at $r = a \Rightarrow J_m(\gamma a) = 0 \Rightarrow \gamma a = \rho_{m,n}$: nth solution of J_m

$ ho_{m,n}$	n=1	n=2	n=3
m=0	$\rho_{0,1} = 2.405$	$\rho_{0,2} = 5.520$	$\rho_{0,3} = 8.654$
m=1	$\rho_{1,1} = 3.832$	$\rho_{1,2} = 7.016$	$\rho_{1,3} = 10.173$
m=2	$\rho_{2,1} = 5.136$	$\rho_{2,2} = 8.417$	$\rho_{2,3} = 11.620$

$$\gamma_{m,n} = \frac{\rho_{m,n}}{a}, \text{ thus } \Psi(r,\theta) = J_m(\frac{\rho_{m,n}}{a} \cdot r) \cdot \exp(\pm im\theta),$$

Resonance frequency $(TM_{m,n,p} - mode)$

$$\omega_{m,n,p} = \frac{c}{\sqrt{\varepsilon\mu}} \sqrt{\frac{\rho_{m,n}}{a^2} + \frac{p^2 \pi^2}{d^2}}$$

63

For
$$E_t$$
 and B_t , calculate

$$\mathbf{B}_t = \frac{i\varepsilon\mu\frac{\omega}{c}}{\left(\varepsilon\mu\frac{\omega^2}{c^2} - k^2\right)} \left[\mathbf{e}_z \times \nabla_t E_z\right],$$

$$\mathbf{E}_t = \frac{1}{\left(\varepsilon\mu\frac{\omega^2}{c^2} - k^2\right)} \nabla_t \left(\frac{\partial E_z}{\partial z}\right),$$

$$TM_{m,n,p} - \text{mode}$$

$$E_z = E_o \cos(kz) J_m \left(\frac{\rho_{m,n}}{a}r\right) \exp(-im\theta), \qquad B_z = 0$$

$$E_r = \frac{iE_0 p\pi}{\gamma_{m,n,p}} \cos\left(\frac{p\pi}{d}z\right) \frac{\partial J_m(\rho)}{\partial \rho} \exp(-im\theta), \qquad B_r = -\frac{E_0 m\varepsilon\mu\omega_{m,n,p}}{\cos(kz)} \cos(kz) J_m \left(\frac{\rho_{m,n}}{a}r\right) \exp(-im\theta)$$

$$E_\theta = \frac{E_0 mp\pi}{\gamma_{m,n,p}^2 dc} \cos\left(\frac{p\pi}{d}z\right) J_m \left(\frac{\rho_{m,n}}{a}r\right) \exp(-im\theta), \qquad B_\theta = \frac{iE_0\varepsilon\mu\omega_{m,n,p}}{\gamma_{m,n,p}c} \cos(kz) \exp(-im\theta) \frac{\partial J_m(\rho)}{\partial \rho}$$
K.Saito ILC 2nd Summer School Lecture for the set of the

Design of TM₀₁₀-mode single cell cavity

Exercise V.Make design a 1300MHz single cell Pill Box cavity1.What is the diameter of the cell?2. What is the cell length?

Characteristic parameters of RF cavity

Surface Impedance Z[\Omega]:
$$Z = \frac{E_{II}}{H_{II}} = R_{S} + iX$$
, $R_{S} = \frac{1}{\sigma\delta} = \sqrt{\frac{\mu\omega}{2\sigma}}$,
Skin depth δ [m]: $\delta = \sqrt{\frac{2}{\mu\omega\sigma}}$
Wall loss P_{loss} [W]: $P_{loss} = \frac{1}{2}R_{S}\int_{S}H_{s}^{2}ds$ $(=\frac{\pi R_{S}E_{o}^{2}}{(\mu/\varepsilon)}J_{1}^{2}(2.405) \cdot a \cdot (a + d)$ for pill box cavity)
Transit time factor T: $T = \frac{\int_{0}^{d}E_{z}e^{i(\omega \times \frac{z}{c})}dz}{\int_{0}^{d}E_{z}dz}$ $(=\frac{2}{\pi}$ for pill box cavity)
Accelerating Voltage V: $V = \int_{0}^{d}E_{o}(\rho = 0,z)e^{i(\omega \cdot \frac{z}{c})}dz$ $(= dE_{o}T - for pill box)$
Accelerating gradient E_{acc} : $E_{acc} = \frac{V}{d}$ $(= E_{o}T = 2\frac{E_{o}}{\pi}$ for pill box cavity)
Stored energy U: $U = \frac{1}{2}\mu\int_{V}H^{2}dv = \frac{1}{2}\varepsilon\int_{V}E^{2}dv$ $(=\frac{\pi\varepsilon E_{o}^{2}}{2} \cdot J_{1}^{2}(2.405) \cdot d \cdot a^{2}$ for pill box cavity
Unloaded Q-value Q_{O} : $Q_{O} = \frac{\omega \cdot U}{P_{loss}}$ $(= \omega \cdot \frac{\mu \cdot a^{2}d}{2 \cdot a(a + d)} \cdot \frac{1}{R_{s}}$ for pill box cavity)

Characteristic parameters of RF cavity

Shunt impedance
$$\mathbf{R}_{h}[\Omega]: \mathbf{R}_{sh} = \frac{\mathbf{V}^{2}}{\mathbf{P}_{loss}}$$
 $\left(= \frac{4(\mathbf{y}'_{\mu})\mathbf{d}^{2}}{\pi^{3}\mathbf{R}_{s}\mathbf{J}_{1}^{2}(2.405)\mathbf{a}(\mathbf{a}+\mathbf{d})} \text{ for pill box cavity} \right)$
Geometrical factor $\Gamma: \Gamma = \mathbf{Q}_{0} \cdot \mathbf{R}_{s} = \frac{\omega\mu\int_{V} \mathbf{H}^{2}dv}{\int_{s}\mathbf{H}_{s}^{2}ds}$ $\left(= \frac{\omega\mu d\mathbf{a}^{2}}{2(\mathbf{a}^{2}+\mathbf{ad})} \text{ for pill box cavity} \right) \Rightarrow \mathbf{R}_{s} = \frac{\Gamma}{\mathbf{Q}_{c}}$
 $\mathbf{R}'_{Q}: \qquad \left(\mathbf{R}'_{Q}\right) = \frac{\mathbf{R}_{sh}}{\mathbf{Q}_{0}} = \frac{V^{2}}{\omega U}$ Goodness of the cavity shape, No dependent on material
 $\mathbf{E}_{sp}/\mathbf{E}_{acc} \quad \left(=\frac{\pi}{2}=1.57 \text{ for pill box cavity}\right), \quad \mathbf{H}_{sp}/\mathbf{E}_{acc} \quad \left(=30.5 \frac{\mathbf{O}_{e}}{\mathbf{MV/m}} \text{ for pill box cavity}\right)$
Smaller value is better from field
emission problem point of view for the value is better from high gradient
point of view for the value is better from high gradient
 \mathbf{P} ill-box cavity maximum Eacc = 1750/30.5 = 57.4 \text{MV/m}

Frequency dependence of the cavity parameters

Characteristic Parameter	ω dependence Normal conducting	ω dependenceSuper conducting
R _S	$\omega^{\frac{1}{2}}$	ω^2
P _{loss}	$\omega^{-\frac{3}{2}}$	No dependence
U	ω^{-3}	ω^{-3}
Qo	$\omega^{-\frac{1}{2}}$	ω^{-2}
R _{sh}	$\omega^{-\frac{1}{2}}$	ω^{-2}
R _{sh} /L	$\omega^{\frac{1}{2}}$	ω^{-1}
Г	No dependence	No dependence
R/Q	No dependence	No dependence

Rsh per length linearly increases to $\sqrt{\omega}$, so normal conducting choose higher frequency, for example 11.4GHz @ warm LC.

Cavity Design (single cell cavity)			
Meshing Driving point	superfish		
All calculated values below refer to the mesh geometry only. Field normalization (NORM = 0): EZERO = 1.00000 MV/m Length used for E0 normalization = 10.76000 cm Frequency (starting value = 1300.000) = 1293.77430 MHz Particle rest mass energy = 0.510999 MeV Beta = 1.000000 Normalization factor for E0 = 1.000 MV/m = 7048.913 Transit-time factor Abs(T+iS) = 0.5454664 Stored energy = 0.0038869 Joules Using standard room-temperature copper. Surface resistance = 9.38405 milliOhm Normal-conductor resistivity = 1.72410 microOhm-cm Operating temperature = 20.0000 C Power dissipation = 1118.1551 W Q = 28257.6 Shunt impedance = 96.230 MOhm/m Rs*Q = 265.171 Ohm Z*T*T = 28.632 MOhm/m r/Q = 109.024 Ohm Wake loss parameter = 0.22157 V/pC Average magnetic field on the outer wall = 1729.9 A/m, 1.40411 W/cm ² 2 Maximum H (at Z,R = 3.32643.8.55466) = 1753.44 A/m, 1.44258 W/cm ² 2 Maximum E (at Z,R = 4.75232.4.24425) = 0.946176 MV/m, 0.02953 Kilp. Ratio of peak fields Bmax/Emax = 2.3288 mT/(MV/m) Peak-to-average ratio Emax/E0 = 0.9462	Hp Fp f		
Exercise VI.

Calculate the following cavity RF parameters from the Superfish outputs.

f₀=1293.77430MHz Ploss=118.1551W RsQ=265.171 Ω Qo=28257.6 (Rsh/Q)=109.24 Ω Hp=1753.44 A/m Ep=0.946176 MV/m

Superfish outputs

Rsh [Ω] = Accelerating Voltage V [MV]= RF wave length λ [m] = Gradient Eacc = V/L_{eff} [MV/m]= Hp/Eacc[Oe/(MV/m)] = Ep/Eacc = Eacc [MV/m] = $Z \cdot \sqrt{P_{loss}} \cdot Q_o$, Z= Geometrical factor Γ [Ω] =

,defined as $L_{eff} = \lambda/2$, use $1A/m = 4\pi 10^{-3}$ Oe

K.Saito

High Gradient Shapes

Cavity shape designs with low Hp/Eacc

TTF: TESLA shape Reentrant (RE): Cornell Univ. Low Loss(LL): JLAB/DESY Ichiro-Single(|S): KEK

RE TTF 1992 2002/2004 2002 **TESLA** IS LL RE **Diameter** [mm] 70 60 66 61 **Ep/Eacc** 2.36 2.21 2.02 2.0 Hp/Eacc [Oe/MV/m] 35.6 42.6 36.1 37.6 **R/Q** [**W**] 113.8 133.7 126.8 138 G[W] 271 284 277 285 41.1 48.5 46.5 49.2 Eacc max

from J.Sekutowicz lecture Note

Eacc vs. Year 2nd Breakthrough! 70 1st Breakthrough! RE, LL, IS shape 60 New Shape **High pressuer** water rinsing (HPR) 50 Eacc,max [MV/m] (.) **40 Electropolshing(EP)** 30 + HPR + 120^oC Bake 20 **Chemical Polishing** 10, 10, 91 '93 '95 '97 '05 '03 **'07** '99 '00 Date [Year]

3.3 Criteria for Multi-cell Structures

Pros and cons for a multi-cell structure

- Cost of accelerators is lower (less auxiliaries: LHe vessels, tuners, fundamental power couplers, control electronics)
- Higher real-estate gradient (better fill factor)
- ✤ Field flatness vs. N
- ✤ HOM trapping vs. N
- Power capability of fundamental power couplers vs. N
- Chemical treatment and final preparation become more complicated
- The worst performing cell limits whole multi-cell structure

K.Saito

K.Saito

4. HOM Issues

4.1 HOM4.2 HOM Coupler

K.Saito

ILC 2nd Summer School Lecture Note

83

HOM Problem

J.Sekutwitz's Slide

Two kind of phenomena can limit performance of a machine due to the beam induced HOM power:

- ✤ Beam Instabilities and/or dilution of emittance
- ✤ Additional cryogenic power and/or overheating of HOM couplers output lines

Beam instabilities and/or dilution of emittance

Transverse modes (dipoles) causing emittance growth+ monopoles causing energy spread This is mainly problem

in linacs: TESLA or ILC, CEBAF, European XFEL, linacs driving FELs.

Additional cryogenic power and/or overheating of HOM couplers output lines

Monopoles having high impedance on axis are excited by the beam and store energy which must be coupled out of cavities, since it causes additional cryogenic load, and induces energy spread. This is mainly problem

in high beam current machines: B-Factories, Synchrotrons, Electron cooling.

HOM modes has to be taken out from the cavity through HOM coupler.

Attention to Trapped modes damping through HOM coupler

HOM couplers limit RF-performance of sc cavities when they are placed on cells

no E-H fields at HOM couplers positions, which are always placed at end beam tubes

The HOM trapping mechanism is similar to the FM field profile unflatness mechanism:

- weak coupling HOM cell-to-cell, k_{cc,HOM}
- ✤ difference in HOM frequency of end-cell and inner-cell

4.2 HOM Coupler

The TESLA –like HOM couplers are nowadays designed in frequency range: 0.8-3.9 GHz

Suppression of Multipacting in HOM Cylinder by better HOM coupler design

5. Lorentz Detuning

K.Saito

Lorentz Detuning Compensation Tuner System @ KEK

Coaxial screw ball tuner

NO BCD yet for ILC!

K.Saito

Comparison of Tuners (Now NO BCD for ILC)

Screw Ball tuner

Saclay-II

Blade Tuner

Jack tuner

Comparison of Tuner Designs

		Screw Ball	Jack	Blade	Saclay-II
Location -	Motor	80K or out of vac. vessel	Out of Vac. vessel	He vessel	Beam tube
	Piezo	80K or out of Vac. vessel	End plate	He vessel	END plate
Tuner mechanism		Coaxial ball screw	Slide Jacky	Twist	Lever type
Motor driving power		0.06gf/µm, 0.1W			
Piezo tuning range		~3000			
Resolution [Hz]	Motor	0.1			
	Piezo	0.1			
$\frac{df}{dl}$ [Hz/ μ m]		368	320		320
$\frac{dF}{dl} \left[N/\mu m \right]$		36.4	80	13	
K.Saito		ILC 2nd Summer School Lecture Note			102

6. RF Input Coupler

K.Saito

Input Coupler Designs

			CC-coupler	STF-BL	TTF-III
Designed RF Power [kW]			500 (2000)	350(1300)	250(1000)
Pulse width [ms]		lth [ms]	1.3 (1.5)	1.3(1.5)	1.3
Repetition [Hz]		n [Hz]	5	5	10
Average rf power [kW]		rf power [kW]	3.25	2.3	3.2
RF processing time [hr]		ssing time [hr]	16	50	20
Γ		Static	1.24	5	6
herr	OUK	Dynamic	1.5 3	3	3
mal Loss [W] 2K	5V	Static	0.54	1.1	0.5
	JK	Dynamic	2.0	0.2	0.1
	1 V	Static	1.8e-4	0.05	0.06
		Dynamic	0.18	0.03	negligible

Can be reduced the dynamic loss at 5K and 2K in CC-coupler by using higher RRR cooper material, for example RRR=40.

Input Coupler Design (a) KEK

By Matsumoto and Kazakov @ KEK

Major Parameters

Pulse width: 1.3 msec

Repetition rate: 5 Hz

Average rf power: 3.25 kW

Thermal loss [W]							
	80K	5K	2К				
Static:	1.24	0.54	2.6x1e-4				
Dynamic	: 2.14	2.88	0.25				
Total:	3.38	3.42	~0.25				
RRR: 3.5 (measured data)							

High Power Test at KEK

ELECTRIC FIELD GRADIENT AT INPUT POWER OF 500-KW

Maximum electric field gradient in the air side for warm window.

Capacitive Coupling Coaxial Line for Input Coupler

Capacitive coupling coaxial line should have advantages; By H.Matsumoto and S.Kazakov

- 1) Good thermal insulation ability between the warm and the cold sides.
- 2) Reduce the brazing difficulty for the ceramic window.

High Power Test at KEK

ILC-45MV_WG5@KEK

INDUSTRIALIZATION with MODULAR STRUCTURE

Input coupler comprises of four modules:

- 1) coaxial transformer
- 2) coaxial line
- 3) rf window
- 4) antenna at cold side

Each pair of rods is mounted in the gap between the inner- and outer-conductors, and are rotated 90 degrees from each other.

The complete input coupler can [1] be divided into four relatively simple parts to ease fabrication and assembly. If we assume that the inner conductors are not rigidly attached the to waveguide, we need only two [2] bellows absorb the to movement of the coaxial line due to thermal contaction and [3] expansion between cool down and warm up.

The fabrication of each module [4] technical requirements dose not overlap for each parts.

Average power: 3.25-kW (500-kW, 1.5-msec, 5-pps) RRR: 3.5 (measured data for copper plated layer)

500kW Input coupler high power test stand @ STF

K.Saito

ILC 2nd Summer School Lecture Note

Coaxial capacitive input coupler

Progress with Input Coupler (a) LAL **Selected recent progress on CARE SCRF:** \bigcirc **3 new prototype designs of power couplers from LAL-Orsay:** X-FEL coupler position sensor waveduide to coax transition room temperature window warm vacuum pumping port Gext tuning sare coax actuator 062 mm Z = 50 0hm bias voltage feedthro O K point cold coax isolating Kapton for 40 mm Gext tuning rod 1.2 K point room temperature isolating vacuum flange cold minde 1.8 K flange to cavity To be built in industry \bigcirc and tested in 2006. K Saito chool Lecture 113 Note

7. Cavity Dressing

7.1 Helium Vessel Assembly at KEK7.2 Cavity Dressing

Flow of the Cavity Assembly to Cryomodule

Module Assembly

The LC cold option

in class 10 cleanrooms

The module assembly is a well defined and standard procedure.

- experience of 10 modules exists
- the latest generation (type III) will be used for series production (XFEL requires 120 modules)
- several cryogenic cycles as well as long time operation were studied
- the assembly problems occurred are well understood and cured

The assembly of an 8 cavity string

- is a standard procedure
- is done by technicians from the TESLA Collaboration
- is well documented using the cavity database as well as an Engineering Data Management System
- was the basis for two industrial studies.
- We are ready to transfer this well known and complete procedure to industry.

TIG Welding of the Vessel @ KEK

K.Saito

ILC 2nd Summer School Lecture

118

Note

Completed Helium Vessel

K.Saito

ILC 2nd Summer School Lecture

Note

K.Saito

ILC 2nd Summer School Lecture Note

Cavity String Assembly at DESY

Coupler Mounting @ KEK

K.Saito

ILC 2nd Summer School Lecture Note

Characteristics of the Liquid Helium

Very small efficiency !

Generation efficiency of LHe: $\eta_{\rm eff}$

$$\eta_{\rm eff}(T) = \frac{T}{300-T} \cdot \eta_{\rm tech}, \quad 6.71\text{E-3} @ 2T,$$

$$\eta_{\rm eff}(2{\rm K}) \approx 0.1\%$$
 @ $\eta_{\rm tech} = 0.2$,

This means that one needs 1kW energy to remove 1 W of the heating.

Very small Latent heat !

	LHe	LN2
Boiling temp.[K]	4.22	77.35
Density [kg/L]	0.125	0.809
Latent heat[kJ/L]	2.55	161
Volume ratio of Gas/Liquid	769	710

Cryomodule Design

- Minimize the radiation energy from outside
- Reduce heat leak from outside
- Use the material with low thermal shrinkage

K.Saito

5K Shielding @ KEK

5K anchor of coupler

Note

Coupler and Tuner in the cryomodule (a) KEK

Installation into vacuum vessel

Move into the tunnel

K.Saito

ILC 2nd Summer School Lecture Note

Cryomodule in the STF Tunnel

For ILC Cryomodule Design

Minor changes to address major concerns.

- Magnet alignment and vibration issues.
- Cryomodule with and without magnet package
 - Define BPM, Steering, and Quad parameters
 - Possible option for separate magnet cryo vessel
- Reduced cavity length (which tuner design?)
- Reduced cavity spacing (new interconnect)
- Need for functional Fast-Tuner

K.Saito ILC 2nd Summer School Lecture 134

2K Liquid Refrigerator (CEBAF)

Characteristics of thermal conductivity of He-II

