Superconducting RF - II - Basics for SRF Technology -

K.Saito, KEK

10. Cavity Fabrication11. Performance Limitations and Cures12. Surface Preparation

K.Saito

10. Niobium Cavity Fabrication

- **10.1 Deep Drawing**
- **10.2 Trimming of half cell**
- **10.3 END group fabrication**
- **10.4 Final EBW assembly**
- **10.5 Nb film coated cavity**

10.1 Deep Drawing

Trimming Configuration at Equator section

So far, KEK has used CBP 100-200µm to make smooth the equator EBW seam. The left trimming shape needs CBP 10 times, and the right trimming configuration needs only CBP twice.

Fabrication Error on half-cell cup

EBW of Dumbbell with stiffener

stiffener-ring after EBW.

to insert stiffener-ring. => EBW (dumbbell + ring)

Dumbbells and END Cups

K.Saito

10.3 END Grope fabrication -Beam Pipe fabrication (thicker Nb tube case)-

Rounding ends

Bending

Closing

Circular die

Circular tube

HOM Coupler Parts

END base plate for Helium Vessel

K.Saito

EBW of END Group

SFC

Note

EBW Assembly of Cavity

Four 9-cell ICHIRO high-gradient LL Cavities were successfully delivered to KEK ! (4 July 2005)

EBW of end-beam-pipes and cell-part

10.5 Nb film coated cavity

LEP-II 352MHz

niobium bulk cavity

Copper half cell before Nb coating

(electropolished)

K.Saito

ILC 2nd Summer School Lecture

160

Note

Nb Coating Method at CERN

Problem: Q-slope

It is no problem at low gradient 5-10MV/m. It brings a serious Q dropping at high gradient. Many studies are under way but so far application of this technology has no hope for ILC.

11. Performance Limitations and Cure

11.1 Field Emission
11.2 Multipacting
11.3 Thermal Instability
11.4 Hydrogen Q-Disease
11.5 Q-Slope
11.6 Magnetic Field Enhancement

K.Saito

ILC 2nd Summer School Lecture

Note

11.1 Field Emission

Non-resonant electron loading due to field emitted electrons by tunneling effect

T-mapping System

Field Emission Analysis

K.Saito

ILC 2nd Summer School Lecture Note

170

Field Enhancement Factor β

Field enhancement factor β: 50 ~ 1000 Projection model :

E

E

E

K.Saito

E

Why field enchantment is so large?

- *Tip-on-tip* model is one explanation
- Smooth particles don't emit.

ILC 2nd Summer School Lecture Note

Starburst in a 1.5GHz Nb cavity

Starburst on a DC cathode (Nb)

Emitter sites are observed on grain boundary in RF case, that suggests magnetic field enhancement there: the enhanced Joule heating promotes evaporating gas and results in star burst.

Cures against Field Emission

- 1) Make dust free clean surface
 - Use ultra-pure water in the rising process
 - High Pressure water Rinsing to remove particle contamination on the SRF surface
 - Use clean-room in the cavity assembly
- 2) Make smooth surface
 - Electropolishing
- 3) Cavity design
 - Lower Ep/Eacc

11.2 Multipacting

Multipacting: Resonant electron loading due to secondary electrons
(synchronized electron motion with RF)Seriously Limited by 1PM or 2PM

One point multipacting

Onset Field of Two-point MP

Comparison with Experiment

Mechanism of Thermal Instability

Thermal conductivity of the niobium material is concerned In order to suppress the thermal instability.

Thermal conductivity has linear relationship with RRR. RRR is used instead of the thermal conductivity.

Field Improvement by High RRR Material

Cure : Post Purifying of Niobium

Post Purification

After cavity or half-cell is produced

- Heat in vacuum furnace to ~ 1350 C
- **Evaporate Ti on cavity surface**
- Use titanium as getter to capture impurities
- Later etch away the titanium
- **Doubles the purity**
- (RRR ~ 600 if originally RRR = 300)

K.Saito

Cure : Inspection of Nb Sheet and Cavity Surface Defect free material : Quality control Result of eddy current scanning a Nb disc, dia. 265 mm at DESY Data - C:\Eigene Dateien\Luftkopf 03.nsx - 🗆 × 270 300 330 360 390 420 90 120 150 180 210 240 -60 -30 60 120 Iron inclusion 30 256 Digits/Div Spur 141 Selection: 6.4 mm × 0.5 mm @ -10.7 mm, -46.6 mm 36.5 mm. -27.0 mm 2,451 mV/A, -176.6° -534 -318i Digits 45% Y, Im Ch 1 1524 LIN

Global view, rolling marks and defect areas can be seen Real and imaginary part of conductivity at defect, typical Fe signal

Eddy current scanning system DESY

K.Saito

ILC 2nd Summer School Lecture Note

Cavity Inner Surface Inspection System : KEK

Mechanism of Hydrogen Q-disease

Mechanism and Explanation of Symptons

At room temperature H moves freely, there is some evidence of surface enrichment

When a cavity is cooled the dissolved hydrogen precipitates as a hydride phase that has high rf loss Tc of hydride = 2.8 K, Hc = 60 Oersted

This explains shape of Q vs E curves of Q-disease cavities

Hydrogen Q-disease in electropolished cavity

Hydrogen Q-disease is much serious on electropolished cavity. Hydrogen degassing has been routinely done by annealing. In those days, pre-cooling with liquid nitrogen had been used and nobody knew the disease depends on cooling down speed.

206

Crucial Baking Effect on EP Cavity

When took baking, Q-slope disappears in case of electropolished cavity. KEK has been used baking and thought that it gets better vacuum. They did not notice the Q-slope.

Disappeared Heating Spots by Baking on EP Cavity

Oxygen Diffusion

Baking could defuse the oxygen contamination on the top into the bulk and the niobium RF penetration surface could be become clean.

Loss Mechanism

Interface Tunnel Exchange(ITE Model) By J.Halbritter

Fig. 1: Nb surface with crack corrosion by oxidation by Nb₂O₅ volume expansion (factor 3). Nb₂O_{5-y}-NbO_x weak links/segregates (y, x < 1) extend up to depths between $0.01 - 1/1-10 \mu m$ for good – bad Nb quality and weak - strong oxidation [8]. Embedded in the adsorbate layer of H₂O/C_xH_yOH ($\geq 2 nm$) being chemisorbed by hydrogen bonds to NbO_x(OH)_y, adsorbate covered dust is found. This dust yields enhanced field emission (EFE [7]) summarized in Sect. 3. 1.

Fig. 3: Band structure at Nb-NbO_x-Nb₂O_{5-y} interfaces with E_c-E_F = $\phi \approx 0.1 - 1$ eV as barrier heights for tunneling along crystallographic shear planes (~ 0.1 eV) or of Nb₂O_{5-y} crystallites (~ 1 eV). Added is the superconducting energy gap $\Delta^*(z) < \Delta_o$ being reduced in NbO_x clusters or interfaces and being normal conducting Δ^* ($z_L \ge 0.5$ nm) in localized states of Nb₂O_{5-y}. By their volume expansion those clusters locally enhance T* and Δ^* > Δ_o in adjacent Nb by the uniaxal strain yielding a smeared BCS DOS.

K.Saito

ILC 2nd Summer School Lecture

Note

12. Surface Preparation Techniques

12.1 Mechanical Grinding
12.2 Buffered Chemical Polishing (BCP)
12.3 Electropolishing
12.4 Annealing
12.5 High Pressure Rinsing
12.6 Megasonic Rinsing
12.7 Degreasing
12.8 Cleanroom

K.Saito

ILC 2nd Summer School Lecture

Note

Various Surface Defects

Surface defects, holes can also

Cracks

Mechanical grinding is a powerful tool to remove large surface defects.

12.1 Mechanical Grinding

MG is very powerful to remove surface defects but remains Contamination on the ground surface.

It is usually used as pre-treatment before chemical preparation.

Buffing

Buffing TRISTAN 320 half cups.

- Very powerful
- High reliable
- Well controlled the surface roughness
- Used in the TRISTAN @ KEK
- ·All half-cup were buffed.
- •Other mechanical grinding for welding seams.
- **Problem with buffing**
- 1) High cost
- 2) Impossible to completed structure

Contamination by mechanical grinding

Need to make a chemical preparation in order to remove these contamination.

Remained grains of grinding material (Barrel polishing)

K.Saito

ILC 2nd Summer School Lecture Note 220

Tumbling or Barrel Polishing(BP)

Easy for EBW seam at equator

- Simple
- Possible to a competed structure
- Low cost

Problem in BP

Slow material removal speed 3µm/day

Takes "**One week**" to remove 30µm. **Dopes hydrogen in the Nb material**

Some trials to improve the material removal speed of BP

Developed CBP Machine

Front surface

Cavity rotating/table rotation

CBP Finishing Surface

Large Grain cavity case

Rough stone (rough) : 5 times (4 hour each) Green stone (medium) : Once Brown stone (medium): Once White stone (for final fine finish) : Once Totally ~ 200 µm removed @ equator

Very fast removal speed!

Material removal speed: "one week"(BP) → 4hr (CBP)

12.2 Buffered Chemical Polishing (BCP)

HF(46%);HNO₃(60%);H₃PO₄ 1:1:1 (V/V)

No reaction with Nb, Mild the reaction, Increase viscosity of the acid.

d

•Simple and A large material removal speed (10μm/min @ R.T.)

Problem of BCP: Surface is not so smooth.

Chemical reaction: $6Nb+10HNO_3 \rightarrow 3Nb_2O_5+10NO \uparrow +5H_2O$ $Nb_2O_5 +10HF \rightarrow 2NbF_5 + 5H_2O$

 $6Nb+10HNO_3+30HF \rightarrow 6NbF_5+10NO^{\top}+20H_2O^{\top}$

CEBAF CP & Rinsing

Shower for Rinsing the outer cavity surface

K.Saito

ILC 2nd Summer School Lecture Note 228

EP Finished Surface

1) The finishing surface roughness depends on that of the initial surface.

- 2) The finishing roughness becomes smooth exotically with the material removal.
- 3) Grain boundary is not sharp edge as that of BCP case.
- 4) Easy control of surface roughness.

K.Saito

ILC 2nd Summer School Lecture

KEK Early EP (Vertical EP)

- 1) Close the EP acid in the EP system to improve the working environment.
- 2) Easy H_2 gas evacuation even for multi-cell cavity.
- 3) Uniform material removal in each cell for multi-cell cavity.
- 4) Simple control.

Successfully developed Horizontal EP system

EP System Flow

Cathode extraction after EP: TRISTAN

K.Saito

Contamination Problem from Buffing

Sulfur

Al, Si, Fe are originated from buffing (TRISTAN) S is due to decomposition of H_2SO_4 during EP process.

In the early stage of the TRISTAN mass production, these contamination brought heavy field emission on cavity performance. The EP system was overhauled once. See next slide.

Sulfur Contamination in EP System

Teflon heat exchanger tube (Brand-new)

Teflon lining EP acid tank(brand-new)

S precipitated on the contaminants

The contaminated heat exchanger

EP system was cleaned up.

The contaminated EP acid tank

243

Large Vacuum furnace for ILC cavity (KEK Machining Center)

Specification : 800°C, ~E-6 Torr, Working zone 500⁶x 3000L

K.Saito

ILC 2nd Summer School Lecture

Note

Post Purification (Titanization)

Post Purification

Using Titanium getter effect, Oxygen in Nb material can be reduced.

RRR cab be increased by this process.

Problem: Softening of the material

Diffusion Coefficients O: 0.20exp(- $\frac{1.354 \cdot 10^4}{T}$) cm²/sec C: 0.043exp(- $\frac{1.670 \cdot 10^4}{T}$) cm² / sec N: 0.0085exp(- $\frac{1.758 \cdot 10^4}{T}$) cm² / sec Т O N С (^{0}C) mm / hr mm / hr mm / hr 900 0.4 0.005 0.005 1000 0.6 0.008 0.008 1100 0.9 0.13 0.13 1200 1.2 0.19 0.19 1400 2.0 0.38 0.38 247
RRR Improvement by Post Purification

K.Saito

ILC 2nd Summer School Lecture

249

HPR Systems at other labs

DESY-System

K.Saito

Jlab HPR Cabinet

ILC 2nd Summer School Lecture Note

12.6 Megasonic Rinsing

An attractive rinsing method if compact oscillator can be product.

K.Saito

ILC 2nd Summer School Lecture Note

Megasonic rinsing can be an alternative of HPR ?

KEK will start investigation of Megasonic.

K.Saito

ILC 2nd Sum

NOL

12.7 Degreasing after EP

Degreasing is very much effective to eliminate contamination !

12.8 Cleanroom Assembly

