Superconducting RF - II - Basics for SRF Technology -

K.Saito, KEK

13. Performance Measurement (Vertical Test)14. Cavity R&D for ILC

K.Saito

ILC 2nd Summer School Lecture

SRF Cavity (a Nb/Cu clad cavity)

$$Q_{o}^{*} = \frac{Q_{o}}{(1+\beta_{t})} = (1+\beta_{in}^{*}) \cdot Q_{L}$$

$$Q_{o} = (1+\beta_{in}^{*}) \cdot (1+\beta_{t}) \cdot Q_{L}$$

$$= \left[I + (1+\beta_{t}) \cdot \beta_{in}^{*} + \beta_{t}\right] Q_{L}$$

$$= (1+\beta_{in} + \beta_{t}) \cdot Q_{L} \quad \because \beta_{in} \equiv (1+\beta_{t}) \cdot \beta_{in}^{*}$$

$$Q_{o} \equiv \frac{\omega U}{P_{loss}}, Q_{t} \equiv \frac{\omega U}{P_{t}} = \frac{\omega U/P_{loss}}{P_{t}/P_{loss}} = \beta_{t} \cdot Q_{o}$$

$$\omega U = Q_{o} \cdot P_{loss} = Q_{t} \cdot P_{t}$$

$$P_{loss} = P_{in} - P_{r} - P_{t}$$

$$Stationary state : h = const \leftarrow U const$$
K.Saiv ILC 2nd Summer School Lecture
Note
$$P_{t} \quad 266$$

Calculation of Gradient

$$R_{sh} = \frac{V^2}{P_{loss}} \quad \because \quad V = E_{acc} \cdot d_{eff}$$

$$= \frac{(Eacc \cdot d_{eff})^2}{P_{loss}}$$

$$Eacc = \frac{1}{d_{eff}} \cdot \sqrt{R_{sh} \cdot P_{loss}} = \frac{\sqrt{R_{sh}/Q_o}}{d_{eff}} \cdot \sqrt{Q_o \cdot P_{loss}} = Z \cdot \sqrt{Q_o \cdot P_{loss}}$$

$$= Z \cdot \sqrt{Q_t \cdot P_t}$$

$$\therefore Q_O \cdot P_{loss} = Q_t \cdot P_t$$

Once measured the Q_{t} you can calculate Eacc directly from P_t and Q_t . Q_0 is also directly calculated from them. You don't need to measure the decay time for every gradient.

K.Saito

ILC 2nd Summer School Lecture

267

Note

13.3 RF Measurement System

Measurement of Surface Resistance

12. Cavity R&D for ILCHigh Priority issues -

12.1 Establish the preparation method for the reproducible 35MV/m
12.2 Lorentz Detuning issue

END Group design
Lorentz Detuning Compensation by Piezo

12.3 Cavity Fabrication Cost Reduction

Large Grain Nb material
Seamless cavity

K.Saito

Development of the preparation with reproducible 35MV/m

K.Saito

ILC 2nd Summer School Lecture Note

S0 Single Cell Study @ KEK on 21 Apr 2007

	Eacc,max [MV/m] / Qo @ Eacc,max									Emax	Scatt.	MD	Acceptability
	IS#2	IS#3	IS#4	IS#5	IS#6	IS#7	IS#8	CLG#1	CLG#2	[MV/m]	[%]	IVIP	[%]
CBP+CP+AN+EP(80) +HPR+ Bake	36.9	31.4	45.1	44.2	48.8	28.3				39.1 ± 8.2	21	Yes	50
	1.53E10	8.66E9	9.07E9	5.38E9	9.64E9	1.94E9							
CBP+CP+AN+ EP(80+3 fresh) +HPR+Bake		42.0	46.1	44.3	34.3	39.3			43.8	41.7 ± 4.4	11	Yes	67
		9.72E9	9.47E9	1.08E10	8.56E9	1.03E10			3.46E9				
CBP+CP+AN+ EP(40+3 fresh) +HPR+Bake	43.9						49.2*			46.6 ± 3.7	8	Yes	100
	9.47E9						4.33E9						
+EP(20)+HPR+Bake	47.2	52.2	52.9	31.1	48.9	46.5				46.4 ± 8.0	17	Yes	83
	5.98E9	1.51E10	5.23E9	5.21E9	7.56E9	9.03E9							
+EP(20+3 fresh)+HPR +HF+Bake	47.1	44.7	47.8		48.6	43.9		47.9		46.7 ± 1.9	4	Yes	100
	1.06E10	9.80E9	7.80E9		8.00E9	1.17E10		1.00E10					
+EP(20)+H ₂ O ₂ +HPR+ Bake	52.3			34.1	43.4	40.9				42.7 ± 6.0	18	Light	50
	1.09E10			1.37E10	1.39E10	3.01E9							
+EP(20)+Degreasing (US)+HPR+ Bake	50.1	52.2								51.2 ± 1.5	2.9	Lights	100
	7.80E10	7.08E9											
Others Megasonic													
IS: Ichiro center	cell shap	e, Tokyo	o Denka	i polycry	stalline	Nb mate	rial						

CLG: NingXia Large grain, Ichiro center cell shape

Lorentz Detuning Compensation by Piezo

K.Saito

ILC 2nd Summer School Lecture Note

Cavity Fabrication Cost Reduction Issues

K.Saito

ILC 2nd Summer School Lecture Note

Large Grain/Single Crystal Niobium

Potential Advantages

• Reduced costs

By P.Kneisel

- Comparable performance
- Very smooth surfaces with BCP, no EP necessary
- Possibly elimination of "in situ" baking because of "Q-drop" onset at higher gradients
- Possibly very low residual resistances (high Q's), favoring lower operation temperature (B. Petersen), less "cryo power" and therefore lower operating costs
- Higher thermal stability because of "phonon-peak" in thermal conductivity
- Good or better mechanical performance than fine grain material (e.g. predictable spring back..)
- Less material QA (eddy current/squid scanning)

K.Saito

ILC 2nd Summer School Lecture

Material R&D for ILC Large grain niobium cavity R&D in Jlab

Large Grain TESLA Cavity Shape SC, WC_Heraeus Nb

Large Grain/Single Crystal Niobium at JLAB

Cavity

 $E_{peak}/E_{acc} = 1.674$

 $H_{peak}/E_{acc} = 4.286 \text{ mT/MV/m}$

Discs from Ingot

By P.Kneisel and G.Rao

9

K.Saito

ILC 2nd Summer School L Note

Single Crystal / Large Grain Nb Production

Nb Seamless or Nb/Cu Clad Seamless Cavity

K.Saito

ILC 2nd Summer School Lecture Note

Hydroforming of Nb Bulk Cavity in DESY

Cavity Performance

Hydroforming of Nb/Cu Clad Cavity in KEK

K.Saito

ILC 2nd Summer Not.

Flux Trapping Issue

Nb/Cu Clad Seamless Pipes

Seamless ICHIRO 3-cell Cavity (Copper model)

KEK Machinery Center

ILC 2nd Summer School Lecture Note

9-cell Necking machine

Necked 9-Cell

