Answers for the Exercises for the lecture "Superconducting RF-I and II" 7 Oct 2007, K.Saito

Exercise I

$$
\begin{aligned}
& \xi=\sqrt{\frac{2 \pi}{\phi_{0}} \cdot H_{C 2}}, \\
& \frac{H_{C}}{H_{C 2}}=\frac{2 \pi \xi^{2}}{2 \pi \sqrt{2} \lambda \xi}=\frac{\xi}{\sqrt{2} \lambda} \\
& \lambda=\frac{\xi}{\sqrt{2}} \cdot \frac{H_{C 2}}{H_{C}}=\sqrt{\frac{\phi_{0}}{4 \pi} \cdot \frac{H_{C 2}}{H_{C}^{2}}} \\
& \lambda(T)=\frac{\lambda(0)}{\sqrt{1-\left(\frac{T}{T_{C}}\right)^{4}}}, H_{C}(T)=H_{C}(0) \cdot\left[1-\left(\frac{T}{T_{C}}\right)^{2}\right] \\
& H_{C 2}(T)=\frac{4 \pi \lambda^{2}(0) H_{C}^{2}(0)}{\phi_{0}} \cdot \frac{1-\left(\frac{T}{T_{C}}\right)^{2}}{1+\left(\frac{T}{T_{C}}\right)^{2}}=H_{C 2}(0) \cdot \frac{1-\left(\frac{T}{T_{C}}\right)^{2}}{1+\left(\frac{T}{T_{C}}\right)^{2}} \\
& \xi(T)=\sqrt{\frac{\phi_{0}}{2 \pi H_{C 2}(0)}} \cdot \sqrt{\frac{1+\left(T / T_{C}\right)^{2}}{1-\left(T / T_{C}\right)^{2}}}=\xi(0) \cdot \sqrt{\frac{1+\left(T / T_{C}\right)^{2}}{1-\left(T / T_{C}\right)^{2}}} \\
& \kappa(T)=\frac{\lambda(T)}{\xi(T)}=\frac{1}{\sqrt{2}} \cdot \frac{H_{C 2}(T)}{H_{C}(T)}=\frac{H_{C 2}(0)}{\sqrt{2} H_{C}(0)} \cdot \frac{1}{1+\left(T / T_{C}\right)^{2}}=\frac{\kappa(0)}{1+\left(T / T_{C}\right)^{2}} \\
& H_{C}^{R F}(T)=\sqrt{2} \frac{H_{C}(T)}{\kappa(T)}=\frac{\sqrt{2} H_{C}(0)}{\kappa(0)} \cdot\left[1+\left(\frac{T}{T_{C}}\right)^{4}\right]=H_{C}^{R F}(0) \cdot\left[1+\left(\frac{T}{T_{C}}\right)^{4}\right]
\end{aligned}
$$

Exercise II

1)

$$
k=\alpha+i \beta, \quad \alpha=\omega \sqrt{\mu \varepsilon}\left[\frac{\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}+1}{2}\right]^{1 / 2}, \beta=\omega \sqrt{\mu \varepsilon}\left[\frac{\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}-1}{2}\right]^{1 / 2}
$$

when $\sigma / \omega \varepsilon \gg 1$ (very good electric conductor case),

$$
\begin{aligned}
& \alpha=\beta \approx \sqrt{\mu \varepsilon}\left[\frac{\sqrt{\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}}{2}\right]^{1 / 2}=\sqrt{\frac{\mu \sigma \omega}{2}} \\
& \therefore k \simeq(1+i) \cdot \sqrt{\frac{\mu \sigma \omega}{2}} \\
& \delta(\text { skin depth }) \equiv \frac{1}{\beta}=\sqrt{\frac{2}{\mu \sigma \omega}} \\
& R_{S}(\text { surface resistance }) \equiv \operatorname{Re}(Z)=\operatorname{Re}\left(\frac{\mu \omega}{k}\right), \\
& Z=\mu \omega \cdot \sqrt{\frac{2}{\mu \sigma \sigma} \cdot \frac{1}{1+i}}=\mu \omega \cdot \sqrt{\frac{2}{\mu \sigma \sigma}} \cdot \frac{1-i}{2}=(1-i) \cdot \sqrt{\frac{\mu \omega}{2 \sigma}} \\
& \operatorname{Re}(Z)=R_{S}=\sqrt{\frac{\mu \omega}{2 \sigma}}=\frac{1}{\sigma} \sqrt{\frac{\mu \sigma \omega}{2}}=\frac{1}{\sigma \delta}
\end{aligned}
$$

2)

$$
\begin{aligned}
& \delta=\sqrt{\frac{2}{\mu \sigma \omega}}=\sqrt{\frac{2 \rho}{\mu \omega}}=\sqrt{\frac{2 \times 1.72 \cdot 10^{-8}}{4 \pi \cdot 10^{-7} \cdot 2 \pi \cdot 1.3 \cdot 10^{9}}}=1.83 \cdot E-6 \\
& \delta=1.83 \mu \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& R_{S}=\frac{1}{\sigma \delta}=\frac{\rho}{\delta}=\frac{1.72 \cdot 10^{-8}}{1.83 \cdot 10^{-6}}=9.40 \mathrm{E}-3 \\
& R_{S}=9.40 \mathrm{~m} \Omega
\end{aligned}
$$

3)

$R_{S}(4.2 K)=\sqrt{\frac{\mu \omega}{2 \sigma(4.2 K)}}=\sqrt{\frac{\mu \omega}{2 \sigma(300 K)} \cdot \frac{\sigma(300 K)}{\sigma(4.2 K)}}=R_{S}(300 K) \cdot \sqrt{\frac{1}{R R R}}=\frac{9.40}{\sqrt{40}}=1.49 \mathrm{~m} \Omega$

Exercise III

By the Two fluid mode,

$$
\begin{aligned}
J & =\left(\frac{n_{n} e^{2}}{v m_{e}}-i \frac{n_{s} q_{s}^{2}}{\omega m_{s}}\right) E=\left(\sigma_{n}-i \sigma_{s}\right) E=\sigma E \\
Z & =(1-i) \sqrt{\frac{\mu \omega}{2 \sigma}}=(1-i) \sqrt{\frac{\mu \omega}{2\left(\sigma_{n}-i \sigma_{s}\right)}} \\
& =(1-i) \sqrt{\frac{\mu \omega}{2}} \cdot \frac{1}{\sqrt{-i \sigma_{s}\left(1-\frac{\sigma_{n}}{i \sigma_{s}}\right)}} \\
& \approx(1-i) \cdot \sqrt{\frac{\mu \omega}{2}} \cdot \frac{\left(1+\frac{\sigma_{n}}{2 i \sigma_{s}}\right)}{\sqrt{-i \sigma_{s}}}, \quad \because \frac{\sigma_{n}}{\sigma_{s}} \gg 1 \\
& =\sqrt{\mu \omega} \cdot\left(\frac{\sigma_{n}}{2 \sigma_{s}^{3 / 2}}+i \frac{1}{\sigma_{s}^{1 / 2}}\right) \quad \because \sqrt{i}=\sqrt{e^{-\pi / 2}}=\frac{1-i}{\sqrt{2}}
\end{aligned}
$$

If define the λ (London's penetration depth) as following,

$$
\lambda_{L} \equiv \sqrt{\frac{m_{s}}{n_{s} q_{s}^{2} \mu}}=c \sqrt{\frac{2 m}{4 n_{s} \mu e^{2}}}=c \sqrt{\frac{m}{2 n_{s} \mu e^{2}}}
$$

One can get the impedance Z as: $Z=\frac{\mu \omega \lambda_{L}^{3}}{\delta^{2}}+i \mu \omega \lambda_{L}=\frac{\mu^{2} \omega^{2} \lambda_{L}^{3} \sigma_{n}}{2}+i \mu \omega \lambda_{L}$ Z=Rs+iX,
then

$$
\begin{gathered}
R_{S}=\frac{1}{2} \sigma_{n} \omega^{2} \mu^{2} \lambda_{L}^{3}, \mathrm{X}=\omega \mu \lambda_{\mathrm{L}}, \quad \sigma_{n} \equiv \frac{n_{n} e^{2}}{v m_{e}} \\
R_{S}= \\
R_{S}=\frac{1}{2} \sigma_{n} \omega^{2} \mu^{2}
\end{gathered}
$$

At $\mathrm{T}=0 \mathrm{~K}$, all electrons become superconducting electrons (ground state).
At a finite temperature $T[K]$, some electrons are excited from the ground state ($\mathrm{T}=0 \mathrm{~K}, \mathrm{E}=0$) to the state ($\mathrm{T}=\mathrm{TK}, \mathrm{E}=\Delta$), which breaks superconducting state (normal electron). The exciting probability exciting (T, Δ) is estimated by Boltzman statistics as:

$$
n_{n}(T, \Delta)=n_{s}(0,0) \exp \left(-\frac{\Delta}{k_{B} T}\right) .
$$

So one can be written as:

$$
\sigma_{n}=\frac{e^{2}}{m \nu} n_{s}(0) e^{-\frac{\Delta}{k_{B} T}} .
$$

Thus the Rs of RF superconductivity is given as:

$$
R_{S}(T, f)=A \cdot f^{2} \exp \left(-\frac{\Delta}{k_{B} T}\right) .
$$

Exercise IV

This will take a time. Please try it after this summer school.

Exercise V

$$
\begin{aligned}
& \omega_{0,1,0}=\frac{c}{\sqrt{\mu \varepsilon}} \sqrt{\frac{\rho_{0,1}^{2}}{a^{2}}}=\frac{2.405 \cdot c}{\sqrt{\mu \varepsilon} \cdot a} \\
& a=\frac{2.405 \cdot c}{\sqrt{\mu \varepsilon} \cdot 2 \pi f}=\frac{2.405 \cdot 3.00 \times 10^{10}}{2 \pi \cdot 1.3 \times 10^{9}}=8.83 \mathrm{~cm}, \text { Damtrer= } 17.66 \mathrm{~cm} \\
& \mu=\mu_{0}=\varepsilon=\varepsilon_{0}=1 \text { in Gauss unit, } \\
& d=\frac{\lambda}{2}=\frac{c / f}{2}=\frac{3.00 \times 10^{10} / 1.30 \times 10^{9}}{2}=11.54 \mathrm{~cm}
\end{aligned}
$$

Exercise VI

$$
\begin{aligned}
& R_{s h}[\Omega]=3.087 \mathrm{M} \Omega \\
& V[M V]=\sqrt{R_{s h} \cdot P_{\text {loss }}}=\sqrt{3.0868 \times 10^{6} \times 1118.1551}=0.05875 \mathrm{MV} \\
& \lambda[\mathrm{~m}]=3.0 \times 10^{8} / 1.2937743 \times 109=0.23188 \mathrm{~m} \\
& \operatorname{Eacc}[\mathrm{MV} / \mathrm{m}]=\frac{V}{\lambda / 2}=\frac{0.05875}{0.23188 / 2}=0.5067 \mathrm{MV} / \mathrm{m} \\
& H p / E a c c=1753.44 \times 4 \pi \times 10^{-3} / 0.5067=43.46 \mathrm{Oe} /[\mathrm{MV} / \mathrm{m}] \\
& E p / \text { Eacc }=1.867
\end{aligned}
$$

$$
\operatorname{Eacc}[V / m]=\frac{\sqrt{R_{\text {sh }} / Q_{0}}}{L_{\text {eff }}} \sqrt{P_{\text {loss }} \cdot Q_{0}}=\frac{\sqrt{\frac{3.087 \times 10^{6}}{28257.6}}}{0.23188 / 2} \cdot \sqrt{P_{\text {loss }} \cdot Q_{0}}=90.15 \cdot \sqrt{P_{\text {loss }} \cdot Q_{0}}
$$

$$
\Gamma[\Omega]=Q_{0} \cdot R_{s}=265.171[\Omega]
$$

Exercise VII

$C_{\text {in }}=\left(\frac{p_{0}}{p_{\text {in }}}\right) \cdot \sqrt{\frac{p_{\text {in }}^{\prime}}{p_{0}}}=\left(\frac{50.0 \times 10^{-3}}{55.5 \times 10^{-6}}\right) \cdot \sqrt{\frac{22.6 \times 10^{-3}}{39.0 \times 10^{-3}}}=685.8$
$C_{r}=\left(\frac{p_{0}}{p_{r}}\right) \cdot \sqrt{\frac{p_{0}^{\prime}}{p_{i n}^{\prime}}}=\frac{50.0 \times 10^{-3}}{10.72 \times 10^{-6}} \cdot \sqrt{\frac{39.0 \times 10^{-3}}{22.6 \times 10^{-3}}}=6127.1$
$C_{t}=\left(\frac{p_{0}}{p_{t}}\right) \cdot \sqrt{\frac{p_{0}^{\prime}}{p_{t}^{\prime}}}=\frac{50.0 \times 10^{-3}}{3.04 \times 10^{-3}} \cdot \sqrt{\frac{39.0 \times 10^{-3}}{27.9 \times 10^{-3}}}=19.45$

Exercise VIII

$P_{i n}=685.8 \times 3.11 \times 10^{-3}=2.133 \mathrm{~W}$
$P_{r}=6127.1 \times 192 \times 10^{-9}=1.176 \mathrm{~mW}$
$P_{t}=19.45 \times 0.142 \times 10^{-3}=2.762 \mathrm{~mW}$
$P_{\text {loss }}=2.133-1.176 \times 10^{-3}-2.762 \times 10^{-3}=2.129 \mathrm{~W}$
$\beta^{*}=\frac{1+\sqrt{\frac{P_{r}}{P_{\text {in }}}}}{1-\sqrt{\frac{P_{r}}{P_{\text {in }}}}}=\frac{1+\sqrt{5.5157 \times 10^{-4}}}{1-\sqrt{5.5157 \times 10^{-4}}}=\frac{1+0.02349}{1-0.02349}=1.048 \beta_{t}=\frac{P_{t}}{P_{\text {loss }}}=\frac{2.762 \times 10^{-3}}{2.129}=1.297 \times 10^{-3}$
$\beta_{\text {in }}=\left(1+\beta_{t}\right) \cdot \beta_{\text {in }}{ }^{*}=\left(1+1.297 \times 10^{-3}\right) \times 1.048=1.049$
$Q_{L}=\frac{2 \pi f \tau_{1 / 2}}{\ln (2)}=\frac{2 \times 3.1416 \times 1.303590529 \times 10^{9} \times 23.6 \times 10^{-3}}{\ln (2)}=\frac{193.30 \times 10^{6}}{0.69315}=2.789 \times 10^{8}$
$Q_{0}=\left(1+\beta_{\text {in }}+\beta_{t}\right) \cdot Q_{L}=\left(1+1.049+1.297 \times 10^{-3}\right) \times 2.789 \times 10^{8}=2.0503 \times 2.789 \times 10^{8}=5.718 \times 10^{8}$
$Q_{\text {in }}=\left(1+\beta_{t}\right) \cdot \beta^{*}{ }_{i n}=\left(1+1.297 \times 10^{-3}\right) \times 1.048=1.049$
$Q_{t}=\frac{Q_{0}}{\beta_{t}}=\frac{5.718 \times 10^{8}}{1.297 \times 10^{-3}}=4.408 \times 10^{11}$
$R_{s}=\frac{\Gamma}{Q_{0}}=\frac{265.17}{5.718 \times 10^{8}}=463.75 \times 10^{-9}=463.75 \mathrm{n} \Omega$
$E_{\text {acc }}=Z \cdot \sqrt{P_{\text {loss }} \cdot Q_{0}}=90.148 \times \sqrt{2.129 \times 5.718 \times 10^{8}}=3.145 \times 10^{6} \mathrm{~V} / \mathrm{m}=3.145 \mathrm{MV} / \mathrm{m}$
$E_{p}=\left(E_{p} / E_{\text {acc }}\right) \times E_{\text {acc }}=1.867 \times 3.145=5.872 \mathrm{MV} / \mathrm{m}$
$H_{p}=\left(H_{p} / E_{\text {acc }}\right) \times E_{\text {acc }}=43.46 \times 3.145=136.68$ Oe

