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Integrated luminosity:

• Integrated luminosity = Peak luminosity x time x derating factors

• Peak luminosity requires charge (power) and low emittance
– At specified energy 

• Integrated performance requires
– reliability
– stability
– controls
– diagnostics
– system understanding

• Operations, as a field in itself: 
– ‘operations engineering’ or ‘industrial engineering’
– describes how to assess and optimize the utilization of a facility
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Integrated luminosity

• Time accounting
– Impact of lost time can be substantial 

• How long is a year?
– Operating fraction typically 5000/8760 – 57%
– The difference sometimes includes ‘ scheduled 

maintenance’
• How much maintenance is required?
• (many don’t consider these as ‘lost’ time)

• Budget dividing lines – used for planning



Simple budget:

TL=time integrating Lnom
Ty=total time in year
TD=long downtimes -

upgrades
TS=recovery from the 

above
TSM=scheduled 

maintenance

TUM=unscheduled maint
TR=recovery from the 

above
TMPS=machine protection
TAP=accelerator physics
TT= tuning

Typical numbers 
Red line indicates the ‘5000 

hour’ point

TAPMPSRUMSMSDyL TTTTTTTTTT −−−−−−−−=
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ILC Downtime budget

• to the right of the line.
– controversy over scheduled maintenance
– Goal is 25% downtime … max.

• this goal must be reconciled with impact on capital cost and 
operating costs; may change as ILC project matures

• split this: 15% target to be managed, 10% contingency
– Use that goal to apportion a budget and evaluate system 

designs
– this is required by size of the system.

• Typical synchrotron light machine: 
– T_UM + T_R = 4%
– requirements are different from ILC; the long term goal is serving 

users promptly, not integration
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Definitions

• Availability – (1-Unavailability)
– Unavailability is the time luminosity is not produced because hardware is broken.
– Plus the recovery time after hardware is repaired.
• =MTBF / (MTBF+MTTR)

• Reliability

• Mean time to failure (MTBF)
– Mean time between failures; of a single device or of a system

• Mean time to replace (MTTR)
– Time to fix it and restart operation

• Recovery time
– Time to restore conditions to pre-fault state

• Tuning time
– Nothing broken, but unsatisfactory operation 
– routine or non routine tasks required to fix it

λ

λtNetR −=)(
=1/MTBF

Probability of success until time t
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Startup process
• How is the ILC started, after a short interruption? (T_R)

– We must protect beamline components from simple beam-induced 
failure:

• puncture – this effect is new with ILC; older machines have lower 
charge density

• heating
• radiation

– A single nominal (2e10, ~few micron bunch) is capable of causing
vacuum chamber puncture

– The full single beam 11 MW power has much more destructive 
capability

• 1e14 W/cm^2 at the end of the linac
• 2e23 W/cm^2 at the IP
• But there is time to detect and prevent this extreme power from 

damaging expensive hardware - 1 ms train length
• BDS entrance fast abort system
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Results from the FFTB single bunch damage test

• tests done with 
Cu 

• Copper / Nb are 
similar
– Nb tests have not 

been done

• energy 
independent
– Electromagnetic 

showers are a 
further concern

1% pilot bunch at linac end (0.13 e7)
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Pilot bunch
• Each startup sequence begins with an analysis 

of hardware / set point / controls software 
readiness
– This is like a ‘summary interlock check’

• then benign ‘pilot bunch’ traverses the system 
and is used to validate subsystem performance
– incapable of causing ‘single pulse’ damage
– 1% of the charge
– or 100 x the cross section
– roughly independent of energy; what matters is at the incoming 

surface

• the time since the last successful operation is 
important
– many systems remain fixed over 200ms
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Transition from a single pilot pulse to full 
power operation (1)

• Neglect injector / source details
– (actually very important with the undulator – driven source)

• Require system checks before each pulse
– depending on effects of various failure modes; may have a pilot every machine 

pulse
– to be effective the pilot should be early enough to allow controlled beam shutoff 

in case a problem is discovered
– during the pulse, 50 us or 1/20 of the beam has been extracted and not yet 

dumped…
• the ILC BC, linac and BDS are long enough to hold 1/20 of the bunches

• If a problem occurs:
– ring extraction must be stopped
– the beam upstream of the problem location must be deflected to a protection 

dump
• fast, large amplitude deflecting kicks are not expected to occur in the 

linac itself.
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Transition from a single pilot pulse to full 
power operation (2)

• once we know the path is clear, 
– 1) produce the nominal single bunch
– 2) start to increase the number of bunches over a sequence of machine 

pulses (30 x 1/5 second…)

• As soon as the power becomes ~ kilowatts, average 
heating from (fractionally) small beam losses will be 
observed
– Stop the sequence,
– identify the mechanism
– fix it
– check it
– Restart
– (this could take time, and could result in a relaxation oscillator)
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Injector startup

• parallel startup sequence using ‘e+ keep-alive’
backup source
– e+ / e- to DR and BDS dump independently

• series startup using undulator source
– e- to linac dump before e+ are made

• injector beam power ~ 0.25 MW
– undamped beam tails are less well controlled
– e+ normalized emittance 1e-2
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MPS transient ‘history’

• MPS can cause large changes in beam intensity
– TTF experience

• Key components change depending on average beam 
power:
– positron capture section RF

• heated by target radiation
– damping ring alignment

• heated by synchrotron radiation
• many SR sources and B-factories use ‘trickle charge’ to maintain 

stability
– collimator position

• beam heating will move the edges of the collimator jaws
– Others? – see homework question

• Performance will depend on thermal history
– what happens on pulse n depends on n-1…
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Machine Protection

• Machine Protection system manages the above functions
• Consists of 

– device monitors (e.g. magnet system monitors; ground fault, thermal sensors)
– beam loss and beam heating sensors
– interlock network with latching status

• Also
– keeps track of TMPS
– tests and calibrates itself
– is integrated into the control system 

• Most vulnerable subsystems:
– Damping ring, ring extraction to linac, beam delivery, undulator

• Most expensive (but not so vulnerable because of large cavity iris 
diameter):

– linac
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Machine Protection at LHC

• MPS is complex and detailed, and lessons learned are expensive in 
time and money.

– we can learn from LHC
• The LHC will have more stored beam energy than any previous 

machine – 350 MJ
– total energy is similar to a 747 at 1/3 of takeoff speed
– the beam is so energetic, it is hard to deflect its trajectory quickly
– the MPS is based on beam loss sensors

• There are several (relatively simple) failure modes that result in the 
destruction of the entire machine (one of the rings) in one turn

– 90 us.
– the beam ‘cuts’ the vacuum chamber open along the mid-plane symmetry 

surface
• LHC MPS makes extensive use of redundancy and machine ‘mode’

controls
– allowing flexibility only when the power is low
– Locks components (software mostly) at high energy
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Failure modes

• Subsystem failures can direct the beam outside 
its nominal path
– failed dipoles  - deflected trajectory
– ‘run away’ movers
– loss of accelerator RF – incorrect energy
– Also: damping ring coherent beam instabilities or
– increased generation of beam halo

• Usually the control system will be aware of these 
conditions, but not always
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Extreme beam deflections in the linac

• Failed dipoles
– Dipole strength limited to correct ~3 mm offsets of quadrupole

misalignment at 500 GeV (Bdip/(∂B/∂x)) 
– this is ~10 σalignment
– same dipole at low energies could correct for >30 times (500/15) 

that displacement 
– ⇒ beam outside of aperture
– current limitation Imax(L) has to be built into hardware (firmware)

• Mis-steering / mis-adjusted dipole correctors
• Failed quadrupoles

– need ~30 to fail before the aperture is hit, and beam becomes 
large before hitting the cavity surfaces
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Failed RF phase control
• linac ‘bandpass’ 50% 

– 60 degree phase advance /cell
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Average power losses

• Limiting average power loss is set by personnel radiation 
exposure concerns
– typical limit for normal materials (Copper, Steel) ~ 100 W/m
– (100 x the limit for protons)
– 100 w is 1e-5 of the nominal power
– this is extremely low compared to existing electron machines
– beam dynamics can contribute to this loss, in addition to small mis-

alignments etc.
– 5 sigma (probably beyond present – day simulation code performance)

• component heating from beam loss is also a concern, 
also at 100 W level

• beam loss monitors with this degree of sensitivity are 
available.
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Tuning up – Alignment example
• In general following a startup, or at regular intervals
• Controls will only indicate what sensors show

– component alignment; sensor calibration or thermal drifts, sub-
component deterioration may not be indicated

– beam based checks, beam based tuning is required
• steering, offset finding, emittance tuning, phase space checks

• For example: Beam based alignment (BBA)
– this process takes time; during which the machine is not integrating 

luminosity (TT)
– typically takes ~ 100 pulses per focusing magnet; with ~5 different 

magnet currents
• finds the offset between the magnet center and the BPM

– 300 magnets: ~ 2 hours per linac
• Beam based alignment works best if we start with good 

initial alignment
– A major justification for the long downtimes
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Time scale for repeating BBA

• mechanical
– forced disturbance (system bumped)
– thermal cycling

• ‘civil’
– concrete cracks
– motion of the floor

• electronic
– replaced electronics

• 300,000 hour MTBF (used in the availability simulation) 
• 2000 cavity BPM’s means one fails (and is replaced) per week

– electronic gain drifts
– imperfect calibration



08.10.2007 24

The alignment flow chart (for the warm machine)
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LEP approach to BBA

• Use sub-tolerance synchronous excitation
– 17 Hz on quad windings

• synchronous beam response proportional to 
actual beam offset

• compare beam response observed to that 
predicted by offset estimated from nearby BPM

• similar to ‘dither’ feedback used at SLC
• requires extra precision margin

– beyond that required for normal beam tuning
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Beamline stability at SR sources
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Data from the Swiss Light Source (PSI)
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Using laser interferometers to connect beamline 
systems:

• A sequence of nested tetrahedra; forms a sort of 
infinitely stiff truss

• Information related via central triangle

Floor node

A

B

Ceiling node 1
Ceiling node 1

Automatic 
alignment:

10 nanometer 
resolution possible
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LC Survey Problem 

main beam line

Fiducial marker
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collider component

Another idea: use a train of cars, locked to 
each other with laser interferometers

Tunnel Wall

Reconstructed
tunnel shapes
(relative co-
ordinates)

wall markers internal FSI external FSISM beam

LiCAS technology
for automated 
stake-out process
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Measurement Principle: Frequency 
Scanning Interferometry (FSI)

Extrenal FSI System 
measures Wall 
marker location

Internal FSI System 
∆z. & ∆x,∆y & ∆α,∆β

between cars

Straightness Monitor 
∆x,∆y & ∆α,∆β
between cars

Developed for LHC 
‘ATLAS’



08.10.2007 33

Tune up process – beyond BBA Diagnosis 
and other procedures:

• Tuning also will take place when none of the 
routine procedures are indicated

• Everything seems to be ok, but the resulting 
beam is not satisfactory
– diagnostics / instrumentation fulfill this role

• Need low power beam for emittance tuning
– relaxes MPS; may also release locks

• Performance testing and checking procedures
– Software data acquisition package for this:

• Correlation ‘plot anything vs anything’ utility is required
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Low power ILC

• Single bunch operation of ILC may have no luminosity
– ground motion and other instability will cause initial bunches to miss 

each other
– 200 ms is long compared to typical drift amplitude rates
– Thermal: 0.2e-3 degrees
– vibration: 5 Hz amplitude > nm for macroscopic structures

• Machine tuning will require independent study of 
emittance and power effects 
– we must be able to empirically prove the performance of one without the 

other

• How many bunches are needed before an effective 
luminosity can be measured?
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Number of bunches needed to establish 
collisions

0 100 200 300 400 500 600
0
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y position FB:
restore collisions
within 100 bunches

y position scan:
optimise signal 
in pair monitor 

y angle scan
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Tables of tuning 
process - BDS

• Showing 
– the time it takes per 

BDS procedure after 
1) short downtime 
and 2) day-long 
downtime

– continual BDS tuning 
required – the time it 
takes; associated 
interval and expected 
luminosity impact
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Example table of tuning time: system wide

• showing the tuning time required for all systems 
after a short downtime and after a day-long 
down with impact on luminosity
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Tuning collimation - LHC example

• much of the tuning time at SLC was adjusting collimators 
to reduce detector backgrounds

• typical distances between collimators is large, position 
tolerances are tight and relative alignment tolerances are 
also tight

• LHC will have primary, secondary and tertiary collimation
– positions of the secondary/tertiary collimators will depend on the 

position of the primary and the trajectory between 
– the standard process of ‘touch’ and move back will be possible at LHC 

because of MPS
– collimation tuning will require a special machine mode; with low power 

pseudo-benign beam
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Sensitivity example:

• In the BD system, the un-normalized vertical 
emittance is 4 fm-rad

• with 40000 m beta, sigma_y~ 50 um
• rms transverse momentum is 250 eV

• The largest source of electric field in the BD is 
the beam itself
– 250 V is quite small
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Availability

• Separate TUM=unscheduled maint and 
TR=recovery from MPS and tuning
– These are directly related to the engineering / hardware effort
– Subject to analysis to evaluate level of required performance and 

impact of basic design decisions:
• One tunnel vs two
• Damping rings in the same enclosure as linac

• Typical components:
– accelerator power supply MTBF 2e5 hours (at SR sources)

• 1000 one failure per week
– Dried electrolytic capacitors 
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Availability and large systems:

• accelerators are some of the most complex machines ever built.  
• in ILC we have 1,000,000 components, with varying failure effects

– there are 120 motors per RF unit (80000 motors total in the linac alone)
– assume typical MTBF of 500,000 hours – two failures per hour
– if each takes ½ hour to repair – there will be no operation
– (neglecting recovery time)

• We don’t expect to make perfect components with infinite lifetime
– Redundancy is our strategy – exp for critical items
– (e.g. many BPMs, but design so accel doesn't break when one is broken 
– (can mention difficulty of keeping lying BPMs from causing downtime due to 

steering and feedbacks), 
– energy headroom with energy feedbacks, 
– redundant regulators in power supplies, 
– hot spare water pumps).  

• recovery time may be extended due to thermal time constants



Availability evaluation - based on simulation
• for simple systems, like a small accelerator, combine the single

component performance, a simulation is not needed – spread sheet 
is ok.

• for complex systems, with large scale sub-systems (DR, linac, 
positron), develop an ‘operations availability’ simulation

• based on a machine description ‘deck’, which includes:
– redundancy and ‘overhead’
– recovery
– machine time management (machine development, use of repair personnel)

• for example, in the one tunnel model, can only replace a limited number of 
klystrons per day.

– failures that only degrade, as well as more serious failures that terminate 
operation

– access constraints (e.g. the beam can be on in zone A with people in zone B)
• this is used to determine civil layout constraints

– actual MTBF and MTTR from existing machines (DESY, SLAC and Fermilab)
• simulation is best suited for sequencing tasks

– this is operations engineering
– complex ‘management’ simulation code
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Availability evaluation –

• based on monte-carlo random event generation
– have to perform several runs to get a ‘reliable’ result

• includes operational requirements
– machine development
– entry requirements (radiation cool down)
– limited number of people

• used to compare alternatives
– common errors may cancel
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Tunnel Configuration Study

6.513.31.95.679.284.815.2
ILC15 but table C MTBFs and 3% linac energy 

overheadILC16

5.613.11.56.079.485.314.7
ILC9 but table B MTBFs and 6% linac energy 
overheadILC15

3.514.32.84.878.283.017.0
2 tunnels w/ some stuff in accel tunnel w/ 
robotic repair; undulator e+ w/ keep alive 2; 
Tuned MTBFs in table AILC14

9.718.72.74.873.878.721.3
2 tunnels w/ some stuff in accel tunnel; 
undulator e+ w/ keep alive 2; Tuned MTBFs in 
table AILC13

3.414.22.84.878.383.017.0
2 tunnels with min in accel tunnel; undulator e+ 
w/ keep alive 2; Tuned MTBFs in table AILC12

3.720.22.74.872.377.122.9
2 tunnels w/ min in accel tunnel; support tunnel 
only accessible with RF off; undulator e+ w/ 
keep alive 2ILC11

5.919.52.45.173.078.022.0
everything in 1 tunnel; with robotic repair ; 
undulator e+ w/ keep alive 2; Tuned MTBFs in 
table AILC10

11.124.42.05.568.173.526.5
1 tunnel w/ mods in support buildings; no 
robots; undulator e+ w/ keep alive 2; Tuned 
MTBFs in table AILC9

18.128.32.25.364.269.530.5
everything in 1 tunnel; no robots ; undulator e+ 
w/ keep alive 2; Tuned MTBFs in table AILC8

Simulated 
number of 
accesses per 
month               

Simulated 
% time 
useless 
down                        

Simulated 
% time 
actual 
opportunisti
c MD             

Simulated 
% time 
scheduled 
MD                        

Simulated 
% time 
integrating 
lum

Simulated 
% time fully 
up 
integrating 
lum or 
sched MD

Simulated 
% time 
down incl
forced MD                 LC description

Run 
Number



08.10.2007 46

Sensitivity Study

3.413.53.44.179.083.116.9ILC5 but with DR in separate tunnelILC23

3.315.42.84.777.181.818.2ILC5 but 3 hour cooldown instead of 1ILC22

3.610.02.64.982.587.412.6ILC5 but recovery time halvedILC21

3.410.72.25.381.887.112.9ILC5 but MTTRs twice as fastILC20

3.550.12.721.825.447.252.8ILC18 but no keep-alive e+ sourceILC19

4.240.04.99.645.555.144.9
ILC5 but 'commissioning' (0.5xMTBF, 2xMD, 
2xTuneTime)ILC18

3.315.53.34.277.081.218.8
ILC5 but no hot spare klystron/modulator 
where there are single points of failureILC17

3.414.22.84.878.383.017.0
ILC2 but with undulator e+ and keep alive e+ 
source 2ILC5

Simulated 
number of 
accesses per 
month               

Simulated 
% time 
useless 
down                        

Simulated 
% time 
actual 
opportunisti
c MD             

Simulated 
% time 
scheduled 
MD                        

Simulated 
% time 
integrating 
lum

Simulated 
% time 
fully up 
integrating 
lum or 
sched MD

Simulated 
% time 
down incl
forced MD                 LC description

Run 
Number
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Needed MTBF Improvements

Device

Improvement 

factor A for 2 
tunnel 

conventional 
e+ source

Improvement 

factor B for 1 
tunnel undulator 

e+ source, 6% 
energy overhead

Improvement 

factor C for 1 
tunnel undulator 

e+ source, 3% 
energy overhead

Nominal MTBF 
(hours)

magnets - water cooled 20 20 20 1,000,000
power supply controllers 10 50 50 100,000
flow switches 10 10 10 250,000
water instrumention near pump 10 10 30 30,000
power supplies 5 5 5 200,000
kicker pulser 5 5 5 100,000
coupler interlock sensors 5 5 5 1,000,000
collimators and beam stoppers 5 5 5 100,000
all electronics modules 3 10 10 100,000
AC breakers < 500 kW 10 10 360,000
vacuum valve controllers 5 5 190,000
regional MPS system 5 5 5,000
power supply - corrector 3 3 400,000
vacuum valves 3 3 1,000,000
water pumps 3 3 120,000
modulator 3 50,000
klystron - linac 5 40,000
coupler interlock electronics 5 1,000,000
linac energy overhead 3% 3%
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Klystron management

• The linac contains spare klystrons, but these may be a 
long distance away from the one which just failed
– complete readjustment of the linac may be required
– including quadrupole strengths - to rematch the linac

• this should be done quickly, to compensate for the 
expected (high) failure or fault rate
– should be automated
– within a pulse interval? or a few pulses?

• need an accurate estimate of the energy along the linac 
and the gradients of the RF units involved in the 
exchange.
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ATF2 project and redundancy

• Target performance for ILC is far beyond 
present performance

• 5 x for power supplies (10 x for SLAC power 
supply performance)

• Solution is not to reduce MTBF of a given power 
supply, rather to reduce to zero the time to 
replace



08.10.2007 51

Phase 1 - Typical System Block Diagram



Example of component failure – SCRF tuner
• the stepping motor for the blade tuner can fail

– has happened at TTF (‘human error’… design flaw)

• Failure mode: stuck motor
• Failure effects: 

– cavity resonance is shifted from nominal, usually
• pretty benign; but there is no acceleration

– sometimes – may be stuck on resonance (not really so unlikely)
• keeps working
• If, in addition, this is a ‘low field’ cavity, the passage of the beam 

may cause breakdown

• Repair scenario
– take out the module

• CEBAF linac – uses a mechanical shaft feedthrough so 
the motor is not in the cold volume
– typically, the shaft connection fails
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Main linac failure modes

• The primary linac function is to add energy
• redundancy is applied with klystron ‘overhead’

– typically a few percent
– losing a klystron or two does not cause linac ‘failure’

• more serious failure modes:
– cryo cavities – also can lose a few
– cryo system
– vacuum leaks
– tuner systems
– coupler breakdown
– waveguide faults
– magnet / power supply failures
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Consumables

• Tubes (klystrons, thyratrons, tetrodes) will fail after 
~40000 hours and require replacement
– For ILC, the most important consumable is klystron
– Modulators will use modern solid state technology which should have 

more than 200000 hour life (?)
– 700 klystrons with 40000 hour life 3 replacements / week.

• Typical SLAC performance
• Lifetime is dominated by cathode physics

– A main reason for the second tunnel

• electronics, capacitors, fans
• Radiation damaged components – extreme example is 

the target itself
– Hoses, cables, 
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Klystron Replacement for the TESLA Linear Collider

•teams of 3-4 people will exchange a klystron within a few hours; 
klystrons will be equipped with connectors (HV, controls, cooling, 
waveguides) which allow fast exchange of a klystron
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Radiation in the main linac tunnel

• Typical cavity performance will be limited by field 
emission
– an electron beam is generated, which usually does not go beyond the 

next focusing magnet

• the field emitted beam will cause radiation in the tunnel –
beyond that caused by high power primary beam halo
– for a 10 um beam, the Nb cavity vacuum enclosure is at 3000 sigma

• Field emission is an exponential function of the 
accelerating gradient
– some cavities have field limits close to the onset of field emission
– others can go well beyond 
– These can cause substantial radiation in the tunnel
– SNS: 100 Sv/hour
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PEPII BPM 
Electronics 
Installation after 
2004 …
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PEPII BPM 
Electronics 
Installation
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PEPII BPM 
Electronics 
Installation
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Controls

• Purpose of controls to establish equilibrium
– In a storage ring, the closed orbit condition helps to do this directly

• Controls makes precision machines like LC possible 
because the extreme spatial tolerances, stability 
tolerances

• ever-growing list of responsibilities:
– optimization ‘feedback’
– failure effect mitigation
– remote diagnosis the scale of the ILC prevents ‘quick checkout visits’
– trend analysis
– model / simulation integration at all levels
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Remote diagnosis and operation
• Global Accelerator Network Project: Led by DESY
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Timing system
• Constraints on layout

– bunches must collide at IP
• (there are 2 – with different path lengths)

– freshly made e+ must go into the space recently vacated by collision 
bunch –

• ~ arbitrary initial constraint
• (must operate in single bunch mode)

– The integrated path length must be an integer number of ring turns
– Damping ring kicker performance is a key part
– there are other solutions – an exercise in numerology

  

L1 L′2 L′3 

L4 

IP1 e+ Source

e- DR e+ DRs 

∆2
∆1

IP2 
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Timing constraints:

• the damping rings’ circumference and RF frequency;
• the fill patterns in the damping rings (e.g. presence of ion-clearing 

gaps); (here is a non-functional example)

• the lengths of the beamlines connecting the damping rings with the 
sources (particularly the positron source) and with the main linacs;

• the longitudinal separation of the two interaction points;
• the locations of the damping rings within the accelerator complex.

 

f2 bunches in 
f2×nb buckets 

g2 buckets f1 bunches in 
f1×nb buckets 

g1 buckets

distance between kicker pulses (pattern of kb buckets repeated p times) 

f1 bunches in 
f1×nb buckets 

g1 bucketsnb buckets 

1 2 3 5 7 4 6 2 4 6 
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Damping ring injection and extraction

• Typical kickers have 
much longer fall time 
than rise time
– e.g. due to parasitic capacitance 

/ inductance

• injection / extraction into 
the same bucket forces 
symmetric behavior

• sliding gaps
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Safety – primarily radiation

• Radiation is proportional to beam power
– residual activity also, with a different coefficient for proton beams and 

for different materials 
• Aluminum is very good,
• Copper, iron, nickel are about the same
• Nb ?
• Rare earth materials (permanent magnets) can become very 

radioactive
• Prompt exposure and residual activity
• Comparison with other machines (LHC, MI)

– typical proton machine limiting losses are 1W/m
• At ILC energies, synchrotron radiation can be above the 

neutron - liberating giant resonance
– there is a lot more synchrotron radiation power than beam loss power 

• residual activity can be large



08.10.2007 69

20 mSv/event
(20 mSv/yr)

250 mSv/hr for 
max. credible 
beam
(30 mSv/event)

System failure

4 mSv/hrMis-steering

5 uSv/hr
(10 mSv/yr)

20 uSv/hr
(1 mSv/week)

Normal

Operating 
Conditions

5 mSv
/pregnancy

1 mSv
/pregnancy

1 mSv
/pregnancy

Pregnant women

6 mSv/yr
2 mSv/3months

2 mSv/monthFertile women

50 mSv/yr20 mSv/yr1.5 mSv/yr20 mSv/yrStandard 

FNAL (*4)SLAC (*3)KEK (*2)TESLA TDRDESY (*1)

(*1) Radiation Protection Instructions, DESY, June 2004
(*2) Radiation Safety Instructions, KEK, in Japanese, June 2004
(*3) Radiation Safety System, SLAC, April 2006
(*4) Fermilab Radiological Control Manual, FNAL, July 2004

Maximum Allowable Radiation Levels
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Cost of operations

• People
• Power
• Water
• Consumables
• Overhead

• typical numbers: 
– people 80% of the total
– power 80% of the remaining part (16% of the total)
– consumables the rest

– Overhead 30% of the total  - a tax.
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Power flow in the ILC

• Primary external cost; also a critical engineering effort
• ILC 250 MW

– Linac power 95 MW:
• 15% loss for power modulators
• 40% loss for RF source
• 5% loss for distribution
• 35% loss for SCRF filling (where does this power go?)
• 21 MW for the beam

– (The rest ?)
– Two linacs combined have ~650 10MW peak power klystrons

• 17% efficient 10.5 MW beam at the end of each linac
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Subsystem power
• Power to water: 75MW (for both 250 GeV linacs)

– 3.6 KW / meter with full beam power 
• rises to 4.5 kW with 0 beam current explain how the heat 

flow is changed…
– Installed cooling is 82 MW
– Usually can capture 90 to 95% with water system: 360 W/meter 

to air.
• This is about 3 x worse than a typical synchrotron light 

source
modulator 19.0 MW

klystron 30.4 MW

distribution 3.2 MW

SCRF filling 21.5
MW
Beam 20.9 MW

• Air conditioning / air 
temperature control 
is required
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Beam dumps
• Concentrated power and radiation
• Used to segment the system

– 25 dumps; 12 over 0.25 MW capacity

• Installed capacity ~ 35 MW total
– Almost 2 times the system power capability (why?)
– Most ‘localized’ power deposition system
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