Detector background update for L*=3.51 m, L*(ext)=5.5m

Takashi Maruyama

Updates

- SiD Detector with 14 mrad crossing angle
 5 Tesla solenoid field map + Anti-DID field
- L*=3.51 m and L* (ext)=5.50 m
- ILC 500 GeV Nominal beam parameters
- Sync radiations from FF quads
 - No sync radiations in the beamline apertures.
 - Collimation depth
- e+/e- background in vertex detector
- Photon background in Si tracker
- Neutrons in vertex detector

14 mrad crossing geometry

14 mrad crossing geometry in Geant 3 and FLUKA

Sync radiations

Horizontal view

- Back track 250 GeV beam from IP to SF1 without sync radiation, then track from SF1 to IP with sync radiation generation.
- Look at sync radiations at IP, Z=295 cm (Low Z), and Z=656 cm (Extraction Quad exit).

Collimation depth

- First extraction quad constrains the collimation depth.
- Consistent with Frank Jackson (BILCW07)
 - $11.9\sigma_x 70.7\sigma_y$ in red lines
- Collimation depth cannot be defined by just two numbers.— The elliptical curve in (nx, ny) must be used.
- Does the collimation in the collimation section actually achieve this collimation depth?
- Need to study re-population outside the collimation depth.

Pairs and radiative Bhabhas in 14 mrad crossing geometry

Pair background in Tracker

- e+/e- directly hitting VXD and Si Tracker.
 - e+/e- can spiral many times; multiple VXD hits
- e+/e- backscattering from BeamCal is ~10% of VXD hits.
- Photons from beam pipe and VXD
- Photons from BeamCal
 - M1 aperture and length are important

e+/e- hits in Vertex Detector

- Use 20 statistically independent bunches.
 - Bunch-to-bunch fluctuation is much larger than the crossing angle difference or DID dependence.
- e+/e- VXD hits come primarily from pairs directly reaching the vertex detector layers.
- Different L* designs should not have any significant effect.

Photons into Si Tracker

- Secondary photons generated in BeamCal dominate the tracker background.
 - The more energy dumped in BeamCal, the more photons.
- Smaller crossing angle is better.
- Anti-DID can reduce the photon rate by a factor of two; comparable to 2 mrad crossing.
- Different L* design should not affect the photon rate.

Neutrons in VXD (FLUKA)

Neutrons from pairs

	Hits/cm ² /BX	Hits/cm ² /1x10 ⁷ sec
No DID	(3.6 ± 0.2) x10 ⁻³	5.0x10 ⁸
Anti-DID	(2.4 ± 0.2) x10 ⁻³	3.4x10 ⁸
DID	$(4.1 \pm 0.2) \times 10^{-3}$	5.7x10 ⁸

Neutrons from radiative Bhabhas

	Hits/cm ² /BX	Hits/cm ² /1x10 ⁷ sec
No DID	$(1.6 \pm 0.4) \times 10^{-4}$	0.22x10 ⁸
Anti-DID	(0.3 ± 0.2) x10 ⁻⁴	0.04x10 ⁸
DID	$(2.0 \pm 0.6) \times 10^{-4}$	0.27x10 ⁸

Neutron origins

- Neutrons that reach the vertex detector are mostly generated in the BeamCal.
- Anti-DID can reduce the neutron flux.
- Different L* design should not affect the neutron flux.