Preliminary extraction optics for proposed options of L*

Proposed options for incoming optics:

- Three settings for distance between IP and incoming QD0: $\mathrm{L}^{*}=3.51 \mathrm{~m}, 4.0 \mathrm{~m}$ and 4.5 m .
- Position of the incoming QF2 is fixed at $\mathrm{z}=9.5 \mathrm{~m}$, sufficient for push-pull.

Modifications to extraction optics:

- QDEX1 moves along with QD0 for $\mathrm{L}^{*}{ }_{\mathrm{ex}}=5.5 \mathrm{~m}, 5.95 \mathrm{~m}$ and 6.3 m .
- Position of the QFEX2A is fixed at $z=9.6 \mathrm{~m}$.
- The crab-cavity and the warm quads move 1.69 m downstream of IP.
- The chicane magnets move 0.9095 m downstream of IP.
- The SC QDEX1 and QFEX2A are made short with a high field, compatible with 250 GeV beam. The warm quadrupoles and chicane bends are compatible with 500 GeV beam.
- The quadrupole field and length are adjusted to maintain the 2nd focus at the Compton IP with $R_{22}=-0.5$, and to minimize the energy dependent beam size.

Nominal positions near IP for push-pull
incoming

extraction
$\mathrm{IP} \xrightarrow[\mathrm{L}^{*}{ }_{\mathrm{ex}}=5.5 \mathrm{~m} \quad \text { QDEX1 }]{\square+\square}$
QFEX2A ($\mathrm{z}=8.51 \mathrm{~m}$)
Modified positions near IP: QDEX1 moves along with QD0,

A)

IP $\frac{\mathrm{L}^{*}{ }_{\mathrm{ex}}=5.5 \mathrm{~m} \quad \text { QDEX1 }}{\square \square \square}$

B)

C)

Quadrupole parameters

Table 1: Gradient (T/m) x Length (m) x Aperture (mm) at 250 GeV .

L*ex $_{\text {ex }}$	5.5 m nominal	5.5 m	5.95 m	6.3 m
QDEX1 (SC)	$100.0 \times 1.060 \times 15$	$98.00 \times 1.060 \times 15$	$89.41 \times 1.150 \times 17$	$86.39 \times 1.190 \times 18$
QFEX2A (SC)	$23.08 \times 1.200 \times 26$	$31.33 \times 1.100 \times 30$	$33.67 \times 1.100 \times 30$	$36.00 \times 1.100 \times 30$
QFEX2B,2C,2D	$11.19 \times 2.143 \times 42$	$11.12 \times 1.904 \times 44$	$11.27 \times 1.904 \times 44$	$11.36 \times 1.904 \times 44$
QDEX3A,3B	$11.93 \times 2.106 \times 42$	$11.39 \times 2.083 \times 44$	$11.37 \times 2.083 \times 44$	$11.36 \times 2.083 \times 44$
QDEX3C	$10.89 \times 2.106 \times 46$	$11.39 \times 2.083 \times 44$	$11.37 \times 2.083 \times 44$	$11.36 \times 2.083 \times 44$
QDEX3D	$9.63 \times 2.106 \times 52$	$9.82 \times 2.083 \times 51$	$9.81 \times 2.083 \times 51$	$9.80 \times 2.083 \times 51$
QDEX3E	$8.08 \times 2.106 \times 62$	$8.21 \times 2.083 \times 61$	$8.20 \times 2.083 \times 61$	$8.19 \times 2.083 \times 61$
QFEX4A	$7.11 \times 1.945 \times 71$	$7.05 \times 1.955 \times 71$	$7.04 \times 1.955 \times 71$	$7.04 \times 1.955 \times 71$
QFEX4B,4C,4D,4E	$5.94 \times 1.945 \times 85$	$5.89 \times 1.955 \times 85$	$5.88 \times 1.955 \times 85$	$5.88 \times 1.955 \times 85$

- In the new $\mathrm{L}^{*}{ }_{\mathrm{ex}}=5.5 \mathrm{~m}, 5.95 \mathrm{~m}, 6.3 \mathrm{~m}$ options the lengths and z-positions of the quads are fixed, except the QDEX1.
- The Aperture is the radius to beam pipe.

Extraction β functions and dispersion

$\underset{\text { Extraction line with } L^{*}=5.5 \mathrm{~m}}{\mathrm{Clm}}$
Extraction line with $L^{*}=5.5 \mathrm{~m}$ (nominal).

Disrupted beam loss for 250 GeV low beam power option (cs14)

Total loss on magnets and pipe: 125 W At chicane collimators: $44 \mathrm{~W}, 2.7 \mathrm{~W}$

Total loss on magnets and pipe: 126 W At chicane collimators: $44 \mathrm{~W}, 2.7 \mathrm{~W}$

Total loss on magnets and pipe: 123 W At chicane collimators: $44 \mathrm{~W}, 2.7 \mathrm{~W}$

