INTERNATIONAL LINEAR COLLIDER SLAC

 SD0/QD0 Cryomodule Jitter

 SD0/QD0 Cryomodule Jitter Tolerance

 Tolerance}

Glen White

SLAC

March $27^{\text {th }} 2007$

Overview

- Asses jitter tolerance on final cryomodule containing QD0/SD0.
- Calculate lumi-loss based on IP beam-beam offset and beam-growth through off-center passage through SD0.
- Use Lucretia + GUINEA-PIG to measure LUMI loss criteria for QD0/SD0 offset with IP fast-feedback compensating.

IP Fast-Feedback

- Use ILC IP FFB, tuned for 'noisy' conditions
- Less than 5% lumi-loss with GM ' K ' $+25 n m$ component vibration (pulsepulse) \& ~ 0.1 sigma intra-bunch uncorrelated beam jitter.
- Assume BDS-entrance FFB has perfectly flattened beam train (flat trajectory into Final Doublet).
- No 'banana’ effect on bunches.
- Calculate Luminosity from measured bunches, with mean of last 50 weighted to account for the rest of the beam train (2820 bunches).

IP FFB Kicker Position

\square IP FFB kicker in $\sim 1 \mathrm{~m}$ gap between 2 cryomodules near IP.

- Distance of kick from SD0 face effects lumi as beam is kicked off-center going through SD0.
- Advantage to using shorter kicker?

Effect of SD0/QD0 Offset

- Luminosity loss as a function of SD0/QD0 offset and relative importance of offset through SD0 vs. IP offset.
- Shows beam size growth through offset SD0 dominant over FFB beam offset conversion time (more so in vertical plane).
- e.g. for y at 500 nm offset, $\sim 85 \%$ of luminosity loss through beamsize growth effect, 15% through conversion time of FFB system.

Luminosity vs. QD0/SD0 RMS Jitter and Kick Distance

- Calculate Luminosity loss for different jitter / kick distance cases using 'SD0 lumi loss' and 'FFB lumi loss’ look-up tables (horizontal + vertical).
$\square \quad$ Left plot shows \% nominal luminosity with given RMS SD0/QD0 jitter and varying kickSD0 distance.
- Right plot shows all jitter cases plotted vs. kick distance and shows the expected dependence on kick distance.

Tracking Simulation Results with RMS Offsets of both Final Doublet Cryomodules

- Track 80K macro particles (e- \& e+ side) from QF1 -> IP with RMS SF1/QF1 and SD0/QD0 vibration in horizontal and vertical planes.
- Results show mean and RMS of luminosities from a number of consecutive pulses (100 max).

Summary

- Results show added luminosity loss due to jitter of SD0/QD0 cryomodule.
- These effects need to be convolved with 'background' environment of GM and other jitter sources.
- Don't just add this to previous lumi studies.
\square Results are worse-case here where everything else is perfect, other errors (e.g. non-linear train shape) will mask this effect to some degree.
- Small effect due to kicker distance from SD0, becomes more pronounced in cases with larger RMS jitter.
- It is fairly trivial to shorten length of kicker to $\sim 0.2 \mathrm{~m}$ if required.

IP FFB Stripline Kicker

\square S.Smith design for ILC stripline kicker:

- 2 amps -> $25 \Omega 1 \mathrm{~m}$ stripline gives 100 sigma-y IP kick (100 ns risetime).
口 e.g. FONT kicker:
- 15 amps -> $50 \Omega 0.2 \mathrm{~m}$ stripline (<100 ns risetime).
\square Easily increase drive of ILC kicker to allow length to decrease factor 10.
- Possible for larger kicks with ferrite-loaded kicker.

20 mr Crossing Scheme Kicker

Parameter	Value	Parameter	Value
Length	1 m	Current	2 Amps
Turns	1	Voltage	43 Volts
Gap height	20 mm		
Gap width	40 mm	Power	75 Watt
Impedance	25 Ohms	Inductance	$2.5 \mu \mathrm{H}$
Max kick	± 130 nradians	Rise time	$\begin{aligned} & 100 \mathrm{~ns} \\ & (\mathrm{~L} / \mathrm{z}) \end{aligned}$

2 mr Crossing Scheme Kicker

Parameter	Value
Length	1 m
Turns	1
Gap height	180 mm
Gap width	180 mm
Impedance	12.5 Ohms
Max kick	± 100 nradians

Parameter	Value
Current	13 Amps
Voltage	300 Volts
Power	4 kW
Inductance	$1.3 \mu \mathrm{H}$
Rise time	100 ns $(\mathrm{~L} / \mathrm{Z})$

