UTA GEM DHCAL Update

Jae Yu For GEM/DHCAL Group May 11, 2007 CALICE Meeting, Kobe

- Introduction
- 30cmx30cm Prototype GEM chamber Development
- Beam Test Activities
- What next?
- Summary

* UTA, U.Washington, Changwon Nat.U., Tsinghua U. 1

Why GEM's?

- Flexible configurations: allows small anode pads for high granularity
- Robust: survives ~10¹² particles/mm² with no changes
- Fast: based on electron collection, ~few ns rise time
- Uses simple gas (Argon/CO₂) no long-term issues
- Runs at low HV (~400V across a foil)
- Stable operation

GEM-based Digital Calorimeter Concept

May 11, 2(

GEM – Operation

Coupled with a diff electude above and a teadout electude below, it acts as a highly petforming iniciopatien detector. The essential and advantageous feature of this detector is that amplification and detection are decoupled, and the readout is at zero potential. Permitting charge transfer to a second amplification device, this opens up the possibility of using a GEM in tanders with an MSGC or a second GEM.

May 11, 2007

GEN

GEM Foils From 3M

- 30cm x 30cm foils made with three types of coating:
 - Bare copper
 - "organic polymer" coating
 - gold plating
- HV tests made on all three types
 - Prefer to use the uncoated foils
- All 30cm x 30cm chambers built w/ uncoated foils
- 3M is setting up a formal internal project to develop larger foils for the 1m³ prototype stack

– 30x30cm² foil did not require 3M process modification

May 11, 2007

5

30cm x 30cm 3M GEM foils

12 HV sectors on one side of each foil.

Magnified section of a 3M GEM foil.

May 11, 2007

HV Sector Boundary Report

30cm x 30cm GEM Chamber Development

- Foils HV tested and certified
- Jigs made to mount foils, stack chamber

HV Tests on 30cmx30cm 3M GEM foils

70nA and take longer to settle

GEM DHCAL Status Report J. Yu

Time (sec)

GEM 30cmx30cm Foil Mounting Jig

30cm x 30cm GEM Chamber Development

- Foils HV tested and certified
- Jigs made to mount foils, stack chamber.
- Multilayer 30cmx30cm anode board made to work w/ Fermilab QPA02-based preamp cards

Anode Board & Preamp for 30cm x 30cm Chamber

30cm x 30cm GEM Chamber Development

- Foils HV tested and certified
- Jigs made to mount foils, stack chamber.
- Multilayer 30cmx30cm anode board made to work w/ Fermilab QPA02-based preamp cards
- Verified aspects of chamber operation:
 - Stability
 - pulse characteristics (cf. 10cm x 10cm chamber using CERN foils)

30cmx30cm D-GEM Detector Signal

30cm x 30cm GEM Chamber Development

- Foils HV tested and certified
- Jigs made to mount foils, stack chamber.
- Multilayer 30cmx30cm anode board made to work w/ Fermilab QPA02-based preamp cards
- Verify aspects of chamber operation:
 - Stability
 - pulse characteristics (cf. 10cm x 10cm chamber using CERN foils)
- Exposed a 30cmx30cm chamber to 10MeV high intensity electron beams at Korea/KAERI beam tests in May, 2006

30cm x 30cm GEM Chamber for KAERI Beam Exposure

GEM DHCAL Status Report J. Yu

UTA GEM Chamber in KAERI Electron Beam

- •e⁻ beam: 10^{10} particles in 30ps pulse ~every $43\mu s$
- •Scans 4cmx60cm area every 2 seconds

4-pad area (2cm x 2cm) exposed to scanning beams for ~2000 sec.

G10 boards in the exposed area discolorized. But no damage to the GEM foils

UTA GEM-DHCAL Beam Exposure

- In collaboration with Changwon National University, Korea
- Beam scans ~600mm x 40mm area every 2 sec, with 30ps pulse of 10¹⁰ e⁻/pulse over a 5 cm² area → ~10⁹ e⁻/sec on an anode pad
- Total exposure ~2000sec
 - Estimate ~2 x 10^{12} e⁻/pad (~ 1.6 x 10^{-2} mC/mm²) accumulation
 - GEM chamber continued operate normally afterward

• Much above total hits/10y/pad at ILC

• Much below any damage region for decrease in gain.

Fig. 3. Previous aging measurement of a double-GEM detector with Ar–CO₂ (70:30): effective gain versus accumulated charge dQ/dA.

30cm x 30cm GEM Chamber Development

- Foils HV tested and certified
- Jigs made to mount foils, stack chamber.
- Multilayer 30cmx30cm anode board made to work w/ Fermilab QPA02-based preamp cards
- Verify aspects of chamber operation:
 - Stability
 - pulse characteristics (cf. 10cm x 10cm chamber using CERN foils)
- Exposed a 30cmx30cm chamber to 10MeV electron beams at Korea/KAERI beam tests in May, 2006
- Exposed to 8GeV π and 120GeV protons at FNAL MTBF in Mar. Apr. 2007

GEM Chamber Characteristics Run

- Constructed a 30cmx30cm GEM chamber using 3M foils
 - Different chamber than the one we took to Korea last year
- Constructed 5 home-made 16 channel shaper cards
 Works with Fermilab QPM02 chip based fast preamps
- Used the trigger counters for the UTA-ANL joint Vertical Slice test for GEM and RPC
- Constructed a LabView based DAQ program that works with a PCI based 100 channel AdLink ADC card May 11, 2007
 GEM DHCAL Status Report

MTBF Run Goals – Chamber gains and ϵ

- Measure the MiP using protons at 120GeV
- Measure chamber efficiencies and gains
 - Efficiencies of several pads around the given central pad at a fixed gas mixture and fixed HV
 - As a function of gas mixture proportions
 - 2 Gas mixtures: 70:30, 80:20
 - As a function of HV
 - For 70:30: 350 450
 - For 80:20: 300 400
- Exercise simultaneous 32 channel readout

GEM Beam Test Goals

- Measure Pad Occupancy
 - As a function of HV
 - Compare to previous measurements
 - Measure this at a few different positions
- Measure cross talk and noise rates
 - As a function of distance to the triggered pad
- Measure the uniformity of the chamber responses
- Measure rate capabilities of the chamber
 - Measure the efficiency variation as a function of beam trigger rates

UTA MTBF Beam Test Setup

GEM MTBF Runs

- As a secondary: Mar. 21 Mar. 27, 2007
 - Joint run with ChangWon National University, Korea
 - Run behind a straw tube detector group
 - 8 GeV mixed beams
 - Trigger counter timing completed
 - Commissioned the detector and readout system
 - Running as a secondary puts large restrictions on operations
- As the primary: Apr. 4 10, 2007
 - Beam: 120GeV proton alone
 - Chamber analog signal patched outside the enclosure

Trigger Types

- Beam Trigger 5Fold scintillation counters •
 - Three 1cmx1cm finger counters, 5cm apart, are located in front of the setup
 - Two 19cmx19cm counters envelop the chamber active area, separated by about 3m's
 - One counter located about 40cm upstream of the chamber and the other about 2.5 m downstream of the chamber
 - Coincidence of all 5 counters defines a beam spot less than or equal to $1 \text{cmx1cm} \rightarrow \text{Size of one readout pad}$
- GEM Chamber self trigger
 - Use negative chamber output
 - Threshold set at 30mV
- Beam constrained chamber trigger formed of 5F*GEM: 6Fold
 - Allows to look at data from neighboring pads while triggering on the pad centered at the beam

Resolved A Chamber Design Issue

Fig. 1: Schematics of a double-G FM detector.

1cmx1cm pad

Three Pad Responses to Sr90 & Noise

120GeV Proton – Triggered pad & Neighbor, X-Talk measurement

Some numbers: efficiency

- Initial measurement of efficiency on 1cmx1cm pad
 - ~90% on the center 1cmx1cm pad when beam is well constrained on the pad
 - Need to be corrected for double particle events in the 200ns trigger gate
 - Should be careful for multi-particle events
 - Preliminary results show about 20%

Using Three Neighboring Pads

Looking at three neighboring pads •

- Triggering on 5 counter (1cmx1cm max shadow) *GEM (>30mV) → Beam centered pad
- Allow another means of aligning the chamber to the trigger counters \rightarrow Look for balanced hit counts between the two neighboring pads
- Initial measurement of the cross talk rates
 - In the two neighboring pads \rightarrow ~25% but need to clean up results
 - Expect about 5% level once double proton events are cleaned up
 - In the pad immediately next to the triggering pad and the pad 2cm away
 - Some beam intensity dependence observed → Indication of multiple particles within the gate
- Initial measurement of noise : <0.2Hz with lower drift gap HV

MTBF Beam Test Experience

- 120GeV P and 8GeV pion tunes established
 - 120GeV P: Beam spot size at the MT6-2C dump
 - σ_x : 11.5mm, σ_y : 9.1mm
 - Rate: Can vary in a wide range
 - Can go as high as radiation safety allows
 - 8GeV pion: Did not measure beam spot size but seems to be about 2 3 times larger than protons
 - Rate: over 4kHz at the 10cmx10cm TOF paddle right behind our detector
 - Other low energy tunes down to 0.5 GeV established
- Beam available for 12 hours 6am 6pm
 - One 6 sec spill with 4s flat-top/min
 - Shot setups
 - Recycler transfer: Some interruptions (<3 5 times in 12 hr period) of 10~20 min each

31

- HEP Shot: over 1.5 hrs each but avoided during our 12 hr period
- A lot more pleasant environment than before
- Many standard Fermilab logic modules failed to function correctly
 GEM DHCAL Status Report

Vertical Slice Test Prep

- Completed the beam telescope
 - Already used for GEM chamber characteristics run
- Constructed a test chamber with 10cmx10cm GEM foil for DCAL pad board GEM signal transfer testing
- Construction for 16x16 cm² active area chambers
 - 4 sets of 3M GEM foils HV tested and certified
 - For 4 chamber construction (2 w/ DCAL and 2 w/ kPix)
 - Delrin frames for all four chambers in hand
 - Awaiting for FEB arrivals

DCAL Chip 16cm x16cm Slice Test Chamber

GEM FEB for Analog KPix Chip

kPix Chip 8cmx8cm Slice Test Chamber

35

10cm x 10cm Pad Board Test Chamber

What next?

- Late 2007/early 2008
 - Construct large scale unit boards (30cmx1m)
 - Test unit boards
 - Start producing GEM chambers for 1m³ prototype if funding allows
 - Numerous tests, including beam tests for chamber properties, as the large chambers get produced

3M Long (1mx30cm) GEM Foils

- We are working with 3M to develop larger foils for the 1m³ prototype stack
- Minimally modified new artwork (masks) deriving from the 30cm x 30cm foil development
- Small area needed for re-registration as foil moves through etching station.
- Anticipate first sample in fall '07.
- First long chamber construction will follow the electronics slice test at Fermilab late '07.

Proposed Initial 3M 30cmx100cm Foil Design

What next?

- Late 2007/early 2008
 - Construct large scale unit boards (30cmx1m)
 - Test unit boards
 - Start producing GEM chambers for 1m³ prototype if funding allows
 - Numerous tests, including beam tests for chamber properties, as the large chambers get produced
 - Develop TGEM "boards" and prototype chamber

Samples of Thick GEM (TGEM) Higher gains than thin GEMs and lower production cost

TGEM HV Test Results

Thick GEM D	0	15	30	45	60	90	120	180	240	300	Voltage(V)
T 1	30	14	12	11	11	10	9	9	8	8	1000
T 2	25	10	8	8	7	6	5	4	4	4	1000
T 3	25	16	14	12	12	11	10	9	8	8	1700
T 4	30	20	18	16	15	14	13	13	12	12	1700
Τ5	32	20	18	15	14	12	12	11	11	10	1700
T 6	28	17	15	14	12	11	11	10	10	10	1700
Τ7	44	26	23	20	19	17	16	14	15	14	2000

42

What next?

- Late 2007/early 2008
 - Construct large scale unit boards (30cmx1m)
 - Test unit boards
 - Start producing GEM chambers for 1m³ prototype if funding allows
 - Numerous tests, including beam tests for chamber properties, as the large chambers get produced
 - Develop TGEM "boards" and prototype chamber
- Mid late 2008
 - Completion of 1m³ stack
 - Beam test w/ full depth (40 layers) in late 2008

Conclusions

- UTA 30cmx30cm chamber built and exposed to low energy high intensity electron beam in May 2006
- Chamber characteristics test done Mar. Apr. 07
 - Data analyses in progress
 - The experience at MTBF so far has been good and hospitable
- Electronics slice test to start in early summer 07
- Larger foil (30cmx1m) for unit chamber development on going with 3M
 - First set to be available summer 07
- 1m³ prototype test in 2008 w/ available funding
- Thick GEM development and prototype chamber construction in progress