

CALICE - DAQ communication & DAQ software V. Bartsch (UCL) for the CALICE DAQ UK group

outline:

- options for network / switching
- clock
- control: SEUs
- DAQ software for EUDET

DAQ Overview

network / switching

Motivation: why do we need high-speed networks?

- useful R&D for detectors that need it
- useful for aggregating data together and thereby needing less hardware

networkin

• reasonable CPU usage and enough free system resources to perform other computational tasks simultaneous to data transfer.

• ongoing work with multiple 10Gig transfers and system testing under more conditions and more "DAQ" like situations

- working FPGA based Ethernet system, using RAW frames
- successfully doing bi-directional communications in a request-response mechanism to simulate data transfer from a detector readout to off detector receivers

 planning to do larger studies of multiple receivers talking to 1+ FPGA systems and n PC's simulating FPGA systems.

 10Gigbit upgrade options currently under evaluation

Optical switch

- 16x16 switch Polatis
- 20ms switching time
- piezzoel. MEMS
- multi mode
- LC Connectors
- about 20k brit. Pounds
- => dispatching and routing task

clock

clock

- Clock source/interface feeds ODRs with 'machine' clock
- •ODR synchronises CCC-link to LDA with this FE
 - -Clock transferred to ODR via optic-fibre
- •LDA derives FE link clock
 - –Clock distributed multiple DIFs via LVDS uplinks
- •FE extracts clock in hardware

Addition standalone/debug structure:

- •Standalone clocks on LDA and DIF
- •Clock LDA directly
- •Clock DIF directly
 - -Allows clock to be received separately from

clock

Attempting to finalise requirements:

- •'Machine' Clock (*MCLK*): <= 50MHz, low jitter
- •Fast commands: Accurate to an MCLK period
 - –i.e. Links require fixed latency command channel
- •ODR: 125MHz clock because of 1Gb link specifications (very low jitter), multiple of machine clock
- •LDA: Derive *MCLK* with low jitter (for other? detectors): <1ns
- •DIF: MCLK from link used as ASIC digital clock (low jitter)
 - -Bunch Clock = MCLK/16 because of bunch spacing (appr. 320ns)
 - -Fast commands to determine bunch

BC clock synchronisation

Machine-clock is 4x bunch-clock in this example

control: SEU

SEU principle

from E. Normand, Extensions of the Burst Generation Rate Method for Wider Application to p/n induced SEEs

=> look for neutrons, protons and pions depositing energy in the FPGAs

SEU: energy spectrum of particles in the FPGAs

ttbar: 50-70 events/hour
WW: 800-900 events/hour
QCD: 7-9Mio events/hour
from TESLATDR

FPGA	threshol	SEU σ	SEUs/da
	d [MeV]	[cm ² /device	У
]	
Virtex II X-2V100 &	5MeV	8*10 ⁻⁹	0.17
Virtex II X-2V6000			
Altera Stratix	10MeV	10 ⁻⁷	1.99
Xilinx XC4036XLA	20MeV	3*10 ⁻⁹	0.02
Virtex XQVR300	10MeV	2*10 ⁻⁸	0.38
all data from liperature, ref	erer20MeVgive	n in talk 0-8	0.17

 \Rightarrow looks like FPGAs need to be reconfigured once a day

 \Rightarrow before operation radiation tests need to be done with FPGAs chosen for experiment

Hits per bunch train (assuming Gauss distribution of events)

hits per bx

 \Rightarrow Occupancy derived from physics events per bunch train: 12000 hits/24Mio cells - 5*10⁻⁴

DAQ software for EUDET

 which scenario to choose depending on the bandwidth with which the data gets produced: (I) up to 200Mbit/sec, (II) up to ~1600Mbit/sec, (III) from there on

 desirable to have files because transfer is easier and in case of timing problems error handling is easier, but keep system flexible for now

• worst case estimate (very rough):

30layers*100cm*100cm*2kB memory @ each ASIC/72 no of

summary

- requirements of clock/control data need to be discussed
- network switching activity started
- estimate on radiation effects on FE electronics done and as expected small effects
- use cases for software DAQ for EUDET sorted and design decisions can still be discussed

acknowledgement

- Matt Warren, Matthew Wing, UCL
- Richard Hugh-Jones, Marc Kelly, David Bailey, Manchester
- Owen Miller, Birmingham
- Paul Dauncey, Imperial
- Tao, RHUL

backup slides

principal layout of DAQ hardware

other radiation effects

- neutron spallation:
 - non-ionizing effects like nuclear spallation reaction, which make neutrons stop completely =>leads to destruction of electronics
 - depending on 1MeV neutron equivalent fluence
 - 10^{4} /cm²/year expected => too low for any damage
- deep level traps:
 - cause higher currents
 - depending on radiation dose (energy deposition in the electronics)
 - 0.003Rad/year => damage from 42kRad on