Si/W ECAL testbeam analysis

Georgios Mavromanolakis *

Cambridge University

* (also with FERMILAB)

Outline

- ► Transverse shower size
- ► Response and resolution studies
- ► Event-by-event gap correction

_____CALICE Collaboration Meeting, Kobe

070512_

Transverse shower size

Outline

Event selection

(center-edge-corner of wafer)

- Energy spectra and cuts
- ► Radius for 90% 95% containment

070512 _____CALICE Collaboration Meeting, Kobe

Event selection

hit energy threshold

: select hits with energy above 0.5 mip

► • suppression of noisy and double-particle events

- : get mean and rms of event energy distribution
- : fit with a Gaussian in the range mean-rms/2 to mean+rms and get mean and sigma $M_1,\,\sigma_1$
- : fit again with a Gaussian in the range $(M_1 \sigma_1)$ to $(M_1 + 2 \cdot \sigma_1)$ and get mean and sigma M_2 , σ_2
- : accept events for analysis with energy in the range $(M_2-3\cdot\sigma_2)$ to $(M_2+3\cdot\sigma_2)$

Event selection

center of wafer	enerav	run	Emin(mip)	Emax(mip)
	1	230098	98.4	364.8
	2	230099	294.3	669 1
	2	230033	503 G	066.0
	3	230097	505.0 720.0	900.9 1055 0
	4	230100	730.0	1255.0
	5	230104	928.6	1540.1
	6	230101	1151.1	1809.0

► - edge of wafer

energy	run	Emin(mip)	Emax(mip)
1	230132	107.7	354.8
2	230133	279.1	664.6
3	230134	459.4	951.7
4	230135	638.1	1232.2
5	230136	831.1	1515.7
6	230137	1008.0	1783.1

► - corner of wafer

•	energy	run	Emin(mip)	Emax(mip)
	1	230138	94.1	353.8
	2	230139	242.4	654.3
	3	230141	384.6	939.6
	4	230142	524.3	1230.9
	5	230145	667.8	1514.1
	6	230143	813.7	1762.1

Center of wafer

Corner of wafer

Signal containment vs Radius

Radius for 90%-95% containment

Radius for 90%-95% containment

Response and resolution

Outline

- Event selection
- Energy spectra and cuts
- ► Results

070512 _____CALICE Collaboration Meeting, Kobe

Response and resolution studies

• event selection

- : select central part of wafer, ShowerX>-15mm .and. ShowerX<25mm
- : exclude gap in y, ShowerY>-5mm .or. ShowerY<-15mm
- : energy range cut to suppress double electron events (DESY runs)
- : suppress pion contamination, HcalEnergy<10mip (CERN runs only)
- runs under study (initial samples of 50k events)

				E(GeV)	<pre>e⁺ run(CERN)</pre>
				10	300731
1	230098	E(Gev)		15	300733
2	230099	10	300672	16	300734
3	230097	20	300676	10	200725
4	230100	30	300207	10	300735
5	230104	45	300195	20	300736
6	220101		000100	30	300742
0	230101			50	300744

Energy spectra binsize fixed(4 mip), fit range [-1 σ , 2 σ]

Energy spectra binsize variable (E/GeV mip), fit range [-1 σ , 2 σ]

Energy spectra binsize fixed(4 mip), fit range [-1.5 σ , 2 σ]

Energy spectra binsize variable (E/GeV mip), fit range [-1.5 σ , 2 σ]

Event-by-event gap correction

Outline

- ► Introduction
- Description of method
- Results from simulation
- Application to testbeam data

Introduction

► - wafer border

- ► · interwafer gap correction
 - : try to develop a gap correction method that works on an **event-by-event** basis
 - : i.e. can be applied to data from a real experiment where the incident particle energy per event is not known in advance

Interwafer gap correction

Description of method

► • some formalism

: correction factor =
$$\frac{LayerEnergyCorrect}{LayerEnergyReadout} = 2 - A_R + \frac{2 \cdot (A_R - 1)}{1 + (1 - \exp((\frac{X - X_{gap}}{\sigma_x})^2) \cdot (1 - \exp((\frac{Y - Y_{gap}}{\sigma_y})^2))}$$

: correction factor lies in $[1, A_R]$ with $A_R = \frac{1}{1 - \frac{2d_{gap}}{\pi R}}$

• on an event-by-event basis do

- : for all layers and events set $\sigma_x = \sigma_y = 5$ mm, $d_{gap} = 2$ mm
- : get position of gaps X_{gap} , Y_{gap} per layer (construction/engineering data)
- : get shower position X,Y per layer relative to gaps (tracking)
- : approximate R with the energy weighted RMS of X,Y of shower hits in layer
- : apply correction formula per layer

Simulation e^- 3 GeV

without correction

with correction

Simulation e^- 3 GeV

without correction

with correction

Simulation *e*⁻ 3 GeV

with correction

correction improves shape, mean, rms, rms/mean

Simulation e^- 3 GeV

correction improves shape, mean, rms, rms/mean

Run230134 e^- 3 GeV

without correction

with correction

Run230134 e^- 3 GeV

without correction

with correction

Run230137 e^- 6 GeV

without correction

with correction

Run230137 e^- 6 GeV

without correction

with correction

Inter-wafer/cell correction

wafer with 6 \times 6 Si cells

interwafer correction only

wafer with 6 \times 6 Si cells

interwafer and intercell correction

Summary (Event-by-event gap correction)

► · interwafer gap correction

- : illustration of a correction method that works on an event-by-event basis
- : based on simple geometrical assumptions
- : shows significant recovery of response along ECAL gaps for low energy electrons (1-6 GeV)
- : similar or better performance is expected for higher energy particles where RMS X,Y approximates better the actual shower width per layer

• "inter-cell gap correction" = cell charge collection efficiency

: in principle similar correction approach can be applied for the inter-cell gaps

see also method developed by L.Morin