electromagnetic shower in the AHCAL

- selection criteria
- data / MonteCarlo comparison of:
 - handling
 - linearity
 - shower shapes

CALICE collaboration meeting may $10^{th} - 12^{th}$ 2007 Niels Meyer & Nanda Wattimena

MC digitisation (reminder)

MOKKA Monte Carlo [GeV]:

!! not in released code!!

- → Monte Carlo [MIP]
- → light crosstalk to neighbouring tiles
- → add MIP calibrated pedestal events (from data)
- → remove hits below 0.5 MIP & uncalibrated channel

simulation of nonlinearity

- → convert to pixel with measured lightyield (pixel/MIP)
- → apply SiPM response curve measured at ITEP for each SiPM
- → convert back to MIP with same lightyield
- \rightarrow convert back to GeV

selection criteria

- HCAL only August runs (double sampling, wrong SiPM working point ~ 0.5 V too low Bias)
- 50 GeV secondary beam (320678, 320671, 320666, 320665, 320664, 320660)
- demanding 3x3 cm² trigger on & 1x1m² trigger off
- ignoring hits below 0.5 MIP
- ignoring uncalibrated (MIP, gain or intercalibration) channel

uncalibrated channel

- less than 4 hits in uncalibrated cells per event (mean value)
- no hits above ITEP measured curves at any energy
- hits in uncalibrated cells are removed from analysis the energy loss is not compensated for
- MC includes uncalibrated cells and treats them in the same way

non-linearity correction

!! different correction as in released code !!

SiPM response curves measured at ITEP

- → linear fit to first 3 points to fix ,,linear pixel" scale
- → convert data from ADC channel to pixel
- → find corresponding "linear pixel"
- → convert corrected pixel to MIP
- \rightarrow convert MIP to GeV
- if no ITEP curve in database use arbitrary curve
- if data point higher than measured curve use last measured point

temperature variation

temperature variation in module 9 during the gain taking periode:

~ 2.5 K

during the electron runs temperature:

 $\sim 0.5 \text{ K}$

gain variation during this periode: < 2%

systematic uncertainties

temperature stable within $\sim 0.5 \text{K}$ (not corrected for \rightarrow systematic error)

$$A[MIP] = f_{resp} \left(A[ADC] \cdot \overline{G} \cdot \overline{G} \cdot \overline{I} \cdot \overline{M} \right)$$

gain calibration G from low LED light:

 $\sigma_{G} \approx 2\%$ $\sigma_{I} \approx 2\%$ ⊕ intercalibration I from LED light:

 $\frac{\sigma_{\rm f}^{\circ} \approx 4\%}{\sigma_{\rm pix} \approx 5\%}$ \oplus non-linearity correction \mathbf{f}_{resp} from ITEP curves:

 \rightarrow Pixel uncertainty:

⊕ MIP calibration M from muon beam: $\sigma_{\rm M} \approx 3\%$

- $\boldsymbol{\sigma}_{\text{pix}}$ has to be propagated through non-linearity correction $\boldsymbol{\Theta}$
- fortunately this leads to $\sigma_{\rm G}$ & $\sigma_{\rm T}$ almost cancel out \odot
- $\bullet \sigma_{\rm M}$ is the dominating error

linearity

sampling factor SF_{data} (10~20 GeV): 34.75 MIP/GeV = 0.029 GeV/MIP sampling factor SF_{MC} (10~20 GeV): 39.99 MIP/GeV = 0.025 GeV/MIP

data still shows saturation effects up to 6% difference due to shifted working point: data taking – ITEP measurement?

number of hits

- ~ 2 more hits in data
- → within nonlinearity effect

still "MIP"~ reminent at high energies → selection can be improved

noise contribution

18 noise hits @ 20GeV beam with 1.2 MIP per hit times 1.8*0.029 GeV/MIP $\rightarrow 1.1$ GeV noise

noise shape

longitudinal profile

module 2 $\frac{0.16}{0.04}$ $\frac{0.12}{0.08}$ $\frac{0.08}{0.06}$ $\frac{0.08}{0.04}$ $\frac{13.41}{0.02}$ $\frac{13.41}{0.08}$ $\frac{13.41}{0.08}$

| Lateral profile | Lateral p

calorimeter depth $[X_0] \xrightarrow{35}$

• lateral noise profile is flat (few outliners, though)

• longitudinal profile shows noisy modules (especially module 2 in layer 11)

lateral shower profile

good agreement between data & MC (within the rather large systematic uncertainties)

energy per hit

good agreement between data & MC at low energies (<20 GeV) discrepancies at higher energies: beam profile & saturation

longitudinal profile

MC shower still starts too late (beam-line material in MC?) module 7: missing ITEP curve for 4 core cells

$t_{max} & \lambda_{att}$

shower depth $t_{max} = b / c$

data: $1.04 \cdot x + 1.91$

MC: $0.90 \cdot x + 2.80$

shower attenuation $\lambda_{att} = 1 / c$

data: $0.07 \cdot x + 1.48$

MC: $\sim 1.48 \cdot x + 8.87$

summary & outlook

done:

- ✓ analysis chain fully established
- ⊗ 6% nonlinearity remaining at high energy
- ✓ data & MC in agreement within remaining nonlinearity dominated by systematic uncertainties

to do:

- repeat for October data
 (more active layers, correct working point, but less data points)
- apply temperature correction (LED data)