

HCAL future: 2nd generation module and testbeam plans

Felix Sefkow

CALICE collaboration meeting Kobe, May 10-12, 2007

Outlooks

- EUDET module prototyping
- Test beam plans 2007 and beyond
- Detector optimization

Next generation

- February 15: EUDET milestone 1: calorimetry conceptual report submitted
- June 2007: first AHCAL front end ASIC prototype submission
 - See Christophe's talk on SPIROC
- September 2008: DAQ first prototype (including C3 and s/w)
- June 2009: DAQ full system
 - See Valeria's and Paul's DAQ talks tomorrow
- End of 2007: HCAL mechanical design concept
 - Start prototyping now
- Calibration system single channel prototype
 - Learn from CMB experience

SPIROC: One channel schematic

SPIROC

- First CALICE ASIC with full analogue and digital functionality integrated
 - ~ 8 times larger than present ILC_SPM
- Huge effort at LAL not undisturbed as recent experience and new ideas are incorporated while design is being finalized
 - Accommodate SiPM and MPPC characteristics, experience from March '07 DESY testbeam
 - Still a lot of flexibility required to accommodate large range of SiPM parameters
 - Noise, dynamic range, gain, light yield variation
 - Testbeam usage, trigger issues

Scint - SiPM - PCB integration

- Two possibilities:
 - 1. Photo-sensor scintillator unit + PCB with VFE
 - 2. Scintillator + PCB with photo-sensor and VFE
- We follow option 1, based on the good experience with TB prototype
 - Stable optical connection
 - Early and easy single channel quality control
 - independent of final electronics (schedule)
- Option 2 is followed by NIU and FNAL
 - Advantage: automated SMD technology for photo-sensor mounting

Tile PCB positioning

- The first "LEGO tile" with positioning pins has been produced at ITEP
 - Individual tie positioning to match PCB precision for SiPM connection
- Discussions with scintillator producer have started
 - Mass production with injection molding seems feasible
- Mega-tiles / mega-strips can use same or different positioning method
 - PCB design largely unaffected

LED options

- Present system very versatile and complicated:
 - Low intensity for gain, PIN readout for reference, high gain for saturation
 - We assume gain monitoring is enough
 - Still to be demonstrated
- Light distribution (low intensity)
 - One LED for many channels
 - Required uniformity difficult to achieve
 - Complicated sub-division of HCAL layers
 - One LED per channel
 - · Often proposed, never tried

HCAL Base Unit (HBU) - first idea

FEB

HBU - Constraints

FEB

HBU - PCB layer structure I

FEB

- -6 layer design with cut-outs for ASICS and connectors
- -75Ω Lines for high-gain SiPM setup
- -Three signal layers for impedance-controlled routing
- -Total height (PCB + components): 1.32mm
- Feasibility / Cost-factor under investigation

HBU - PCB Layer Structure II

FEB

ASIC

TQFP-100

- -6 layer design with standard setup
- -75Ω Lines for high-gain SiPM setup

-Two signal layers for impedancecontrolled routing

-Total height (PCB + components):

1.72mm (old value: 2.7mm)

Testboard I: LED

FEB

Test LED integration into HBU (LCS): <u>Proof of principle together with our colleagues from Prague</u>

- -Crosstalk of driving circuit to SiPM?
- -Integration to PCB / coupling to tile?
- -Connector test: stability, number of connection-cycles?

PCB 0.8 mm Connector, LED 0.3 mm Flexboard, Tile Reflector foil Module bottom plate **HCAL** Felix Sefkow May 10, Mathas Reinecke

Features:

- SMD LEDs (two types) LED size $1.6 \times 0.8 \times 0.6 \text{ mm}^3$
- Several LED driving circuits
- >2 Tiles with analog output
- proposed HBU Connector
- Multilayer PCB needed!! (crosstalk test)
- No ASIC...

13

LED testboard

 Verify cross talk limits with realistic
 PCB structure

Felix Sefkow May 10, 2007

HCAL

Testboard II: SPIROC

FEB

SPIROC (ASIC) Testboard IS HBU prototype!

Test of:

- -Cassette (=HBU) assembly (tiles, electronics, cover)
- -Performance of SPIROC in the dense HBU setup (noise, crosstalk, power, gain, ...)
- -LCS with LEDs on board
- -Signal Integrity (see Testboard III), Communication with DAQ
- -Analog AND digital outputs / interfaces (next slide)

Testboard II: Integration

FEB

Environment of the SPIROC Testboard:

Testboard III: Power-System

FEB

Test Power-Ground System (2.20m):

- -Oscillations when switching?
- -Voltage drop, signal integrity (traces, connectors)?
- -SPIROC performance @ far end (blocking caps sufficient)?

Felix Sefkow May 10, Matth Preinecke

HCAL – Main meeting

17

Testbeam 2007 and beyond

- CERN 2007: 2 periods of 2 weeks: 4.-18.7., 8.-22.8.
 - Latest news: might get 1 or 2 weeks more (between periods)
 - You are kindly urged to help Erika and Fabrizio to fill the shift plan!
- Move to FNAL:
 - Currently assume de-installation end September (earliest)
 - · after CERF muon run
 - Move to FNAL via DESY: 6 weeks
 - → Arrive end November, say, before Xmas
- Goals at FNAL:
 - Low energy (2 GeV), particle ID
 - CERN FNAL connection
 - Gas scintillator comparison reference points
 - Common "all scintillator" run with GLD ECAL

Scintillator ECAL

500
 channel
 prototype
 test at
 DESY
 March
 2007

$_{\mathsf{AHCAL\text{-}readout}} \ \, \boldsymbol{readout}$

Scint ECAL upgrade

- Plan to upgrade to 2000 channels
- Cannot run anymore simultaneously with AHCAL
 - Enough CRCs, but too few front end boards
- Plan to produce additional 20 baseboards / 120 piggy backs at DESY
 - There are still 200 300 ILC_SiPM ASICs from LAL left
 - Does not interfere with next generation R&D
 - Cost sharing being discussed
- Aim at combined scintillator ECAL + HCAL run at FNAL
 - In 2008, following SiW ECAL + ScintHCAL run

Further beam tests

- There is more physics for the physics prototype:
 - Neutron hit timing for energy and space reconstruction
 - Use new SPIROC ASIC and (most likely) new DAQ
 - Build new front end boards for existing tile HCAL modules
 - Should become possible ~ 2009
 - GLD HCAL Lead Scintillator option
 - Replace steel absorber on movable stage
 - total stack weight limited to 7t
 - Thickness ratio 4:1 not (quite) possible with 5mm scintillator
 - Strip HCAL
 - PFLOW pattern recognition performance to be demonstrated in MC first
 - If promising: must be tested with beam (short-range correlations)
 - · Physics prototype stack or EUDET structure: to be decided later

(Test beam) analysis

- Test the models, measure shower shapes, e/h
- Test weighting schemes and FLOW algorithms
- Ultimate goal: detector design and optimization
 - Calibration and correction strategies
 - Simulations to define requirements (uncertainties, MIP supply)
- Depth,
- granularity
- · and one vs the other
- → A few slides from Mark Thomson's talk at the Orsay workshop

Current performance

rms90

	1111000
E _{JET}	$\sigma_{\rm E}/{\rm E}=\alpha\sqrt{({\rm E}/{\rm GeV})}$
	cosθ <0.7
45 GeV	0.295
100 GeV	0.305
180 GeV	0.418
250 GeV	0.534

For jet energies < 100 GeV ILC goal reached !!!

For jet energies ~ 200 GeV close to 40 %/√E(GeV) !!

Opinion:

- **★There is no doubt in my mind that PFA can deliver the required ILC jet energy performance*.**
- **★ It is already there for 100 GeV jets QED**
- ★ The current code is not perfect (see later), things will get better

*this is not a statement have made before - please feel free to quote me on this

★ If track momentum and cluster energy inconsistent: RECLUSTER e.g. **18 GeV 30 GeV 12 GeV** 10 GeV Track Change clustering parameters until cluster splits and get sensible track-cluster match

NOTE: NOT FULL PFA as clustering driven by track momentum

This is <u>very</u> important for higher energy jets

Iterative Reclustering Strategies

Cluster splitting

Reapply entire clustering algorithm to hits in "dubious" cluster. Iteratively reduce cone angle until cluster splits to give acceptable energy match to track

- **★** Could plug in alternative clustering (to some extent this is now done)
- ② Cluster merging with splitting

Look for clusters to add to a track to get sensible energy association. If necessary iteratively split up clusters to get good match.

3 Track association ambiguities

In dense environment may have multiple tracks matched to same cluster. Apply above techniques to get ok energy match.

4 "Nuclear Option"

★ If none of above works – kill track and rely on clusters alone (NOT USED)

for completeness...

Visible improvement in WW/ZZ separation

(will return to this later)

HCAL Depth and Transverse segmentation

- **★** Investigated HCAL Depth (interaction lengths)
 - Generated Z→uds events with a large HCAL (63 layers)
 - approx 7 λ_{l}
 - In PandoraPFA introduced a configuration variable to truncate the HCAL to arbitrary depth
 - Takes account of hexadecagonal geometry

- HCAL leakage is significant for high energy
- Argues for ~ $5 \lambda_1$ HCAL

NOTE: no attempt to account for leakage – i.e. using muon hits - this is a worse case

★ Analogue scintillator tile HCAL : change tile size 1x1 → 10x10 mm²

"Preliminary Conclusions"

- 3x3 cm² cell size
- No advantage → 1x1 cm²
 - physics ?
 - algorithm artefact ?
- 5x5 cm² degrades PFA
 - Does not exclude coarser granularity deep in HCAL

Summary

- 3x3cm confirmed with full PFA
 - But maybe not everywhere keep in mind for integrated design
- HCAL depth discussion opened
 - TCMT studies are important
 - Pressure on layer thickness and channel count
- Come-back of energy resolution in PFLOW
 - "Energy momentum-assisted clustering" depends on energy estimate