

AHCAL hadron analysis

Analysis report from the independent analyses of M. Groll and V. Morgunov and N. D'Ascenzo

The data

see CALICE analysis meeting 30.05, M. Groll http://nicadd.niu.edu/cdsagenda//fullAgenda.php?ida=a0725

- pion with negative polarity from 6 GeV to 20 GeV
- stable detector: runs have been collected in \sim 48 h
- low hit energy: 20 GeV run 97 % of the hits are below 15 mips
- ≈3 % of the total energy is deposited by hits of energy above 15 mips

Stability checks

M. Groll

compare results of 3 runs at

8 10 12 14 16 18 20

Beam energy [GeV]

same energy 0.11 uoise mean [GeV] 0.073 0.072 0.071 # entries HCAL_esum in GEV HCAL 2 cut 2 Entries 8344 Mean 0.09134 RMS 0.07704 χ² / ndf 67.22/7 Noise 10 0.06883 ± 0.00095 0.05748 ± 0.00096 stability 0.07 10 +/- 2.5% 0.095 0.069 0.068 10 0.09 1.2 1.4 E [GeV] 12 14 16 18 20 12 14 16 18 20 10 10 Beam energy [GeV] Beam energy [GeV] Ø 0.775 NM 0.775 0.775 0.775 MIP mean [GeV] HCAL_esum in GEV HCAL 2 cut 3 Entries 11392 Mean 0.8031 RMS χ²/ ndf 71.49/31 MIP calib. 0.04 0.79 stability 0.03 0.78 0.75 +/-2.5% 0.02 1. dataset 0.745 0.77 0.74

E. Garutti

0.01

CALICE meeting - Kobe

10 12 14 16 18 20

Beam energy [GeV]

0.76

E [GeV]

The event section

Effect of cuts on HCAL contamination

E. Garutti

CALICE meeting - Kobe

Response and Resolution

M. Groll

Data and MC rescaled at the 10 GeV point, scaling factors:

all π 1.4 GCALOR+MICAP 1.0 (AHCAL π 1.35) GHEISHA 1.4

Energy response

N. D'Ascenzo

The slope (0.83+-0.01 + syst.) is comparable with Marius analysis: 29.5/39.5=0.74 (1/1.35 in previous slide) ~10% difference between analysis: no $E_{\rm ECAL}$ compensation, modules 1&2 not used The linearity at the e.m. scale is good

Longitudinal profiles

M. Groll

scale as logE

E. Garutti

Compression of shower due to containment requirement

Longitudinal profiles

N. D'Ascenzo

6 and 10 GeV pion contained in AHCAL MC: G4 QGSP + Bertini + HP (nucleon transport)

The MC longitudinal profile is broader than data

Shower decomposition (DATA)

pions fully contained in AHCAL

Hadron component of shower

rotation

- = software compensation
 - → using deep-analysis deconvolution of hadronic showers (V. Morgunov)

extract e/h ratio from data

E. Garutti

including

pions with

leakage to

TCMT

CALICE meeting - Kobe

Shower decomposition (MC)

E. Garutti

CALICE meeting - Kobe

Shower decomposition (MC)

GHEISHA: larger fluctuations in the EM component, smaller neutron component

MC true shower composition

N. D'Ascenzo

MC: G4 QGSP + Bertini + HP (nucleon transport)
MOKKA charnel modified to extract step info

E. Garut

MC true

N. D'Ascenzo

Possibility to access the true MC energy decomposition and compare to result of Deep-Analysis reconstruction (not yet available for G3 models)

Conclusion & outlook

- 2 independent analysis have started on pion data
- SiPM saturation plays a minor role, linearity better than 3% (6-20GeV)
- Comparison to MC just started for "classical" shower properties
- Need to have all models available
- Shower decomposition possible with deep-analysis tool
- Software compensation to come
- True shower composition accessible from MOKKA (modified)
- Allows deeper understanding of physics and clustering algorithm
- Still a lot of work to be done, but the preliminaries are promising!