Dual-readout beam test plans

John Hauptman, ALCPG Fermilab, 22-26 October 2007

Fiber DREAM: many measurements (9 NIM papers) PbWO4: a single crystal and an array of 19 crystals (borrowed from ALICE) **BGO**: a single crystal (borrowed from L3) Fiber DREAM: reconfigured to measure neutrons in space and time PbWO4+Fiber DREAM: first attempt at a dualreadout calorimeter 'system' BGO array: test a 'crystal dual-readout calorimeter' with as large an array as possible (money and time) BGO+Fiber DREAM: do everything, including neutrons by time in conjunction with EM BGO.

We are going after everything in dual-readout: fibers, crystals, EM, hadronic, new particle ID methods, ...

Next beam test: most likely Summer 2008

- CERN H4 beam line
 - pions 20-300 GeV; muons 40-200 GeV
 - electrons 20-200 GeV
 - last run (June-July 2007) was exceptionally efficient
 - x-y table to mm precision

The essential limiting factor in all critical tests is the small size of the original, 5-year-old, inexpensive, proof-of-principle DREAM module. Should we ever see funding to build its successor, then ...

- Build modules at Fermilab
 - shops, space and support;
 - fully scalable truncated pyramid modules, both crystal and fiber
- Beam test at Fermilab
 - up to 100 GeV is good enough
 - crystal+fiber slice test

Back-up slides:

neutron and BGO measurements

neutron differential measurement:

Fire pion beam into tower 11, read out channels 10-3-12, 2-1-4, 5-6-7 and 16-17-18 into GHz digital storage scope.

Most MeV neutrons escape the DREAM mass; mean free path ~ 30 cm ~ size of DREAM at 8 MeV

neutron integral measurement: sum all Scintillation and Cerenkov channels, and read out in time

-hadronic particle ID-energy resolution(50-300 GeV pions)

Complete volume interrogation of DREAM: see delayed neutrons event-by-event. Analysis of data in progress.

Data from A. Cardini