

The CALICE test beam activities

Fabrizio Salvatore

Royal Holloway University of London (for the CALICE collaboration)

ALCPG07, FNAL, Chicago, 22nd October 2007

The CALICE collaboration

The ECAL project

Validation of hadronic interaction models in MC
 Z2nd of October 2007
 F. Sal

Calorimetry at ILC

- Calorimetry is one of key ingredients for a high-specs detector at the ILC
 - Need high granularity for precise jet energy resolution

•
$$\sigma_{jet} = \sigma_{charg} \oplus \sigma_{phot} \oplus \sigma_{neut} \oplus \sigma_{confusion}$$

• Design, build and operate a novel detector which fulfils stringent requirements: $\sigma_{jet} = 30\% / \sqrt{E}$

CALICE: build prototypes and perform an intensive test beam programme to characterize various calorimeter concepts

neutral hadrons

10.96

HCAL+ECAL $\frac{\sigma_{ee}}{E} \sim 45\%/\sqrt{E}$

 $\sim 15\%/\sqrt{E_{jv}}$

Analog HCAL prototype

- 38 layers of scintillator tiles (90x90 cm²) with steel absorber (15 in 2006 tb)
- High granularity
 - 3x3 + 6x6 + 12x12 cm² tiles
 - 30 modules with fine granularity (216 tiles) and 8 with coarse granularity (141 tiles)
 - 7608 readout channels (SiPM)
 - Total interaction length = 4.5λ
- Common DAQ for ECAL+AHCAL+TCMT

 96 cm of iron absorber with 16 layers of 5*50mm² scintillator strips

(~10 λ)

A real tracking calorimeter

We are working towards prototyping calorimeters for particle flow algorithms for the ILC !

Outline

The 2006 CERN test beam

- Data taking summary
- Preliminary ECAL and AHCAL results

• The 2007 CERN test beam

- Installation
- Data taking overview
- Detectors' performances
- Future test beam plans
- Conclusions and Outlook

Outline

• The 2006 CERN test beam

- Data taking summary
- Preliminary ECAL and AHCAL results

• The 2007 CERN test beam

- Installation
- Data taking overview
- Detectors' performances
- Future test beam plans
- Conclusions and Outlook

The 2006 CERN test beam

Summary of the data taken

Size on disk: ~ 40 kB/evt

- → 65M events = 2.5 TB for CERN Physics runs
- \rightarrow + 70 M = 3 TB for muon calibration runs

Preliminary results of ECAL analysis

ECAL resolution and linearity

Longitudinal shower development

AHCAL response to electrons

- AHCAL alone (15 layers)
- Remove hits below 0.5 mip
- Energy sum of whole AHCAL, fit mean response
- Linearity better than 6%

Response to pions

- Energy sum compared between data and MC
 - GEISHA (no neutron transport)
 - GCALOR+FLUKA+MICAP (full neutron response)
- Linearity

Summary of 2006 test beam

- Analysis of 2006 data well under way
 - More than 9TB of data to analyze !
- Excellent performance of the ECAL
 - Very encouraging preliminary results on resolution, linearity and longitudinal shower development
- First results from e/π AHCAL results
 - Encouraging results for EM studies
 - Promising results from pion beam data
- Expect first publications by end of this year

Outline

The 2006 CERN test beam

- Data taking summary
- Preliminary ECAL and AHCAL results

• The 2007 CERN test beam

- Installation
- Data taking overview
- Detectors' performances
- Future test beam plans
- Conclusions and Outlook

The CERN beam

• Excellent beam set-up

Super-cycle: {
 14 bp/16.8 sec day
 (17 bp/20.4 sec from 15/08)
 12 bp/14.4 sec night/w-e

• Secondary beam energies:

-80 GeV wobbling	π⁻ (40-100 GeV) and e⁻ (15-50 GeV)
-10 GeV wobbling	π ⁻ and e ⁻ (6-25 GeV)
+60 GeV wobbling	π ⁺ /p(30-80 GeV) and e ⁺ (10-50 GeV)
-130 GeV wobbling	π⁻ (60-180 GeV) and e⁻ (70-90 GeV)

The test beam programme: energies and particle types

• Very intense test beam programme

 7 weeks of continuous data taking (July 5th → August 22nd)

	Proposed in TB plan	Collected during TB
Energy (GeV)	6,8,10,12,15,18,20,25,30,40,50,60,80	6,8,10,12,15,18,20,25,30,40,50, 60,80,100,120,130,150,180
Particles	π±/e±	π [±] /e [±] /protons

- π/e (π/p) separation achieved using Cherenkov threshold detector filled with He (N₂) gas
 - Possible to distinguish π from e(p) for energies from 25 to 6 (80 to 30) GeV

The test beam programme: angles and position scans

- Low energy beams (6-25 GeV)
 - Trigger rate on 10x10 adjusted in beam files using available collimators
 - Average rate ~ 600 pps@ 6 GeV,

~1-3K pps@ 8-25 GeV

• DAQ rate ~35-60 Hz

- High energy beams (30-180 GeV)
 - Trigger rate on 10x10 set to <10K pps to prevent damage to the detectors
 - Average rate ~8K pps
 - DAQ rate ~70-80 Hz

- 90 (and 70) GeV electron beam used

22nd of October 2007

~1.2 M events per chip

CALO response to p/μ beam

TCMT response Time: 12:52:27:680.438 Sat Aug 11 2007 Time: 12:52:27:680:438 Sat Aug 11 2007 Time: 12:52:27:680:638 Sat Aug 11 2003 Run 331534:0 Event 236950 Run 331534:0 Event 236950 Run 331534:0 Event 236950 Hits: 155 Einergy; 2719.09 migs its: 68. Energy: 100-728 migs. Hits: 30 Energy: 47,2818 mige trig the 10.00 11111 **AHCAL ECAL** . **TCMT** hHcalEnergy_vs_TcmtEnergy HcalEnergy_vs_TcmtEnergy Entries 118900 294.2 Mean ****** Mean y 2936 RMS 378.1 RMS y 1048 180 GeV pion strong AHCAL-TCMT

200 400 600 800 1000 1200 1400 1600 1800 2000 TcmtEnergy (mip)

2000

1500

0

22nd of October

anti-correlation

Beam

Summary of data taking time

Time since 5 th of July	4 147 200 sec
14.4s super-cycle	2 389 798 sec
16.6s (20.4s) super-cycle	889 829 sec
Power cuts	86 400 sec
Summer students	57 600 sec
π/e/p data	1 790 698 sec
muons (100x100)	153 976 sec
muons (20x20)	131 752 sec
AHCAL only	365 195 sec
Calibration	318 447 sec
SPS up-time	79.1%
Beam controlled by H6B	76.1% (00.2% of up time)
DAQ taking analysis data	62% (81.5% of beam in H6B)
DAQ on calibration	15.1%

Summary of the 2007 test beam

- This year's test beam has been a huge success !
 - All active elements of calorimeters completed
 - Movable mechanics commissioned
- The test beam programme has been completely fulfilled, thanks to the hard work of everyone involved and to the extra weeks given to us by CERN
- The participation in the test beam has been incredible and full of enthusiasm from everyone in the collaboration
- We have ~14 TB of data available on the grid ready to be analyzed

Analysis of 2007 data under way

Analysis of 2007 test beam data has started

- ECAL
 - Physics performances: linearity and resolution
 - Detector performances: study of nei
 - Irradiation of test PCB with in
 - Particle flow algorithm
 data
- AHCAL+TCMT
 - Detector
 Calibration of SiPM
 - No imperature dependence of SiPM signal
 - performances: linearity and resolution
 - Imparison with existing MC models: characterization of electromagnetic and hadronic showers

JORS

aronics

The next test beam at FNAL

CERN test	Proposed plan for the test beam (4 weeks)	Achieved results at the test beam (7 weeks)
Particle type	π ⁻ (π ⁺), e ⁻ (e ⁺)	$\pi^{+/-}$, e ^{+/-} , protons.
Energy points (GeV)	6 - 80	6 - 180
Angles (deg)	0, 10, 15, 20, 30	0, 10, 20, 30

Preliminary ideas for the test at FermiLab:

- Low energy points: E < 6 GeV, $e/\pi/p$ (minimum E = 0.5 GeV)
- Integration of prototypes: test of SiW/SciW-ECAL+AHCAL/DHCAL
- Physics program: establish data set for comparison with CERN data and AHCAL/DHCAL data
- Angles: 15 deg. (missing in 07 tb), 30 deg. ECAL+AHCAL
- Technical studies: ECAL noise, integrated chip, AHCAL long term stability...

Conclusions and Outlook

- The collaboration is very healthy !
- We are entering in the publications phase
 - Two papers are being prepared on the 2006 test beam, and will be out by the end of the year
 - Analysis on the 2007 data is well under way
 - Still a lot to do, but it is really worth doing it !
- We are growing !
 - Three new institutes asked to join last month
- Ready for our next phase of beam tests
 - Preliminary discussion on next year's tb programme already started

Looking forward to being at FNAL next spring !

Backup slides

SciW ECAL prototype

Prototype ECAL - MPPC readout Tungsten:3.5mm Sci. strip:3mm Strip size: 1cm (width) x 4.5cm (length) Number of layers: 27 (27 Xo) FNAL. (1944strips) DESY (486strips))cm ŏč Tungsten Scintillator 9cm 18cm Cross section 9cmx9cm Test@DESY(This winter) -> In EM shower (Non linearity of MPPC)

Cross section 18cmx18cm Test@Fermilab(2007)

In multi particle injection / Pi0 reconstruction

(slide by T.Takeshita) 35

DHCAL prototypes

• RPC + steel absorber (1x1 cm²)

• 1m³ prototype, 4.5 λ_{I}

- GEMs + steel absorber (1x1 cm²)
 - 1m³ prototype, 4.5 λ_{I}
 - 40K channels

Part R. Report and a double-COV distance

independent of the second seco

- Layers equipped with Micro MEsh GAseous Structure chambers
 - Readout by pads or strips