

Testbeams for LC Tracking R&D

23/10/2007

Ron Settles MPI-Munich/Desy ALCPG07 Testbeam

ILC Tracking Technologies

(stolen from Marcel's Icws07 talk)

- Drift Chamber with Cluster Counting (CluCou)
- Time Projection Chamber (LCTPC)
- Silicon Strip Tracking
 - As additional tracking with TPC (SiLC)
 - Silicon tracking only (SiD)
- ILC Parameters
 - Magnetic fields up to 5 Tesla
 - Power pulsing and material budget
 - 5Hz beam structure

Beam Requirements

- Beam particles
 - Electrons, protons and pions in large momentum range preferred
- Beam diagnostics
 - Good particle id over full momentum range
 - Particle beam telescope
 - Both exists already at most facilities
- Beam structure
 - 5Hz beam structure desired for intrinsic chamber studies
 - 5Hz beam structure required for power pulsing and anticipated associated Lorentz forces; the latter requires large magnetic field
- TPC
 - Currently testing small prototypes
 - Clear need for large aperture facility when testing Large Prototype (LP)
 TPC
- Silicon
 - Most studies can be carried out with small scale, small bore, high field magnet
 - Possibly need for larger scale test facility in the long term

Table 1: LCTPC R&D Scenarios for Large Prototype and Small Prototypes.

Testbeam Options		
Lab	Beams	Availability
CERN SPS	10-400 GeV e, h, μ	LHC absolute priority
DESY	1-6.5 GeV e	> 3 months per year
Fermilab	1-120GeV e, h, μ	Continuous (5%), except shutdown
IHEP Protvino	1-45GeV e, h, μ	One month, twice per year
KEK Fuji	$0.5\text{-}3.4 \mathrm{GeV}$ e	From fall 2007, 240 days per year
SLAC	$28.5 \text{GeV} \ e \ (\text{primary})$	Parasitic to PepII,
	1-20 GeV e, h (secondary)	non-concurrent with LCLS

SiD tracking

Discussions with John Jaros, Marcel Demarteau, et.al.: planning in progress.

Studies are be carried out on small scale in SLAC testbeam (ca. 10 GeV/c).

For future, will want small scale, small bore, high field magnet.

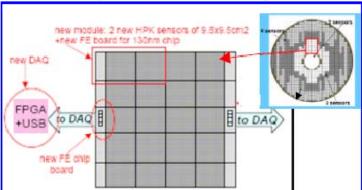
Possibly need for larger scale test facility in the long term.

SILC

5°)Beam Tests (CU Prague, IFCA, IEKP, LPNHE, Torino, HEPHY)

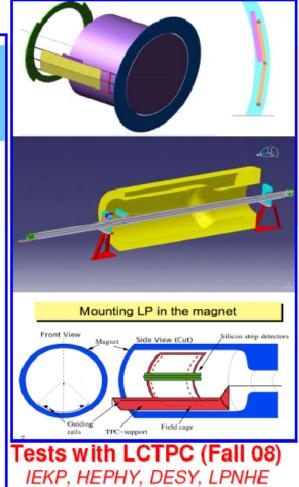
- Beam test at DESY: June 4-15 2007, continuation of the beam test in Nov06, prepa:
- Beam test at CERN: October 10-22,2007, just successfully achieved
- Preparation of beam tests for next years

Beam test at DESY: 5 GeV electron beam B.U., DESY, IEKP, LPNHE, CU Prague, IFCA

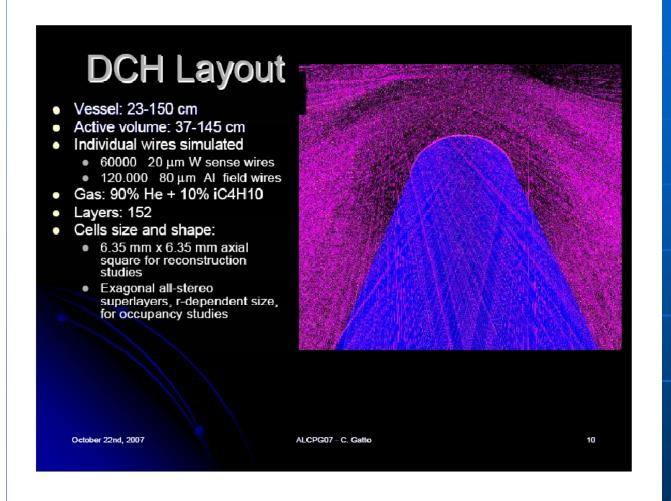

- → Continuation of tests at DESY (Nov 06) & new Lab tests at LPNHE testbench with
- →CMS-180nm vs VA1 (i.e. reference)
- →Attempt to test S/N with Si module:
- 3CMS & 16ch of SiTR-130_v1prototype
- New DAQ Hardware: digitized FE+ FPGA + USB interface
- New DAQ software (VHDL + LabView)
 - New FE board
 - New cabling
- Preliminary tests at the Paris Lab test bench DAQ hard + soft, new chip on FE board connected to Si module

The complete new 130nm-system could not be ready for June tests thus tests were pursued at Lab, in preparation of CERN beamtest

SiLC, ALCPG 2007


CenterC OG

Large size Si prototypes:



- ✓ First prototype of large size (mechanical structure ready end of 2007). Evolutive system.
- √First module just tested @ CERN tb (Oct 07).
- √ Four such plans to be built and equipped (sensors and FEE) for 2008-2009 T.B.
- √Will provide 2 XY/track or 1 XUV if FWD.
- √Cooling prototype will be adapted to it.
- ✓ System available for combined test beam with µvertex prototypes and/or Calorimeter prototypes
- ✓ Alignment system prototype (IFCA) will be included to it.

SiLC, ALCPG 2007

CluCou

Discussion with John Hauptmann:

No testbeam
plan yet.
Testing small
prototype with
cosmics for
clustercounting at
the moment...

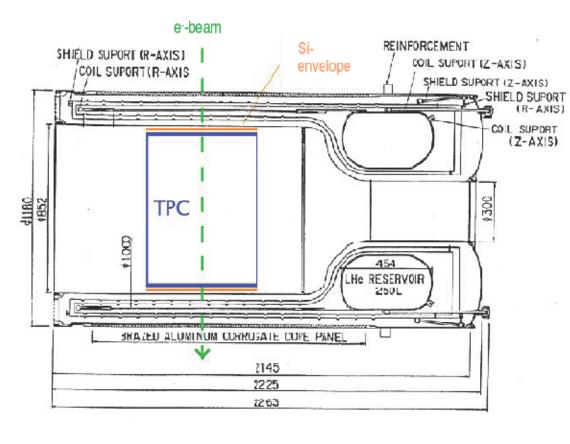
TPC R&D Planning

1) Demonstration phase

 Continue work with small prototypes on mapping out parameter space, understanding resolution, etc, to prove feasibility of an MPGD TPC. For CMOS-based pixel TPC ideas this will include proof-of-principle tests.

2) Consolidation phase

• Build and operate the Large Prototype (LP), Ø ~ 90cm, drift ~ 60cm, with EUDET infrastructure as basis, to test manufacturing techniques for MPGD endplates, fieldcage and electronics. LP design is starting > building and testing will take another ~ 3-4 years.


3) Design phase

• During phase 2, the decision as to which endplate technology to use for the LC TPC would be taken and final design started.

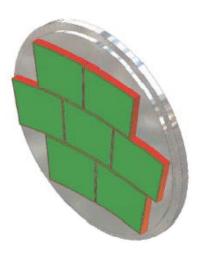
TPC-Test beam-PCMAG

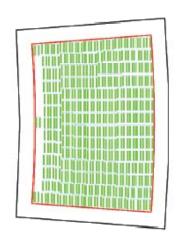
 $B_{\text{max}} \cong 1.25 \text{ T}$

L. Hallermann, DESY

EUDET Annual Meeting 2007, Status report TPC tasks

K. Dehmelt

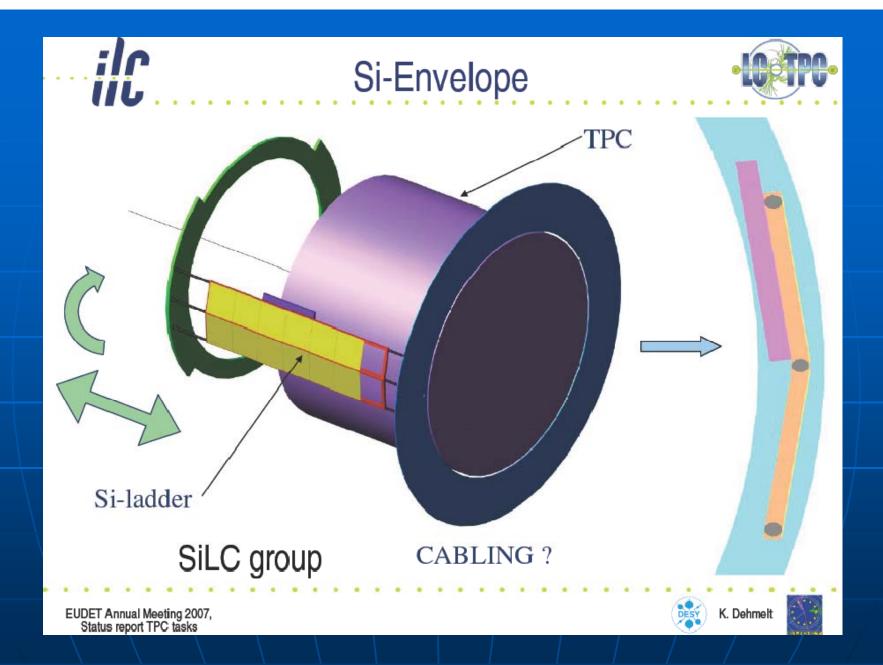



LP-TPC Readout

Endplate with panels

Panel with connectors

Two strategies pursued in EUDET


- FADC-based (Lund, CERN)
- new TDC (Rostock)

EUDET Annual Meeting 2007, Status report TPC tasks

K. Dehmelt

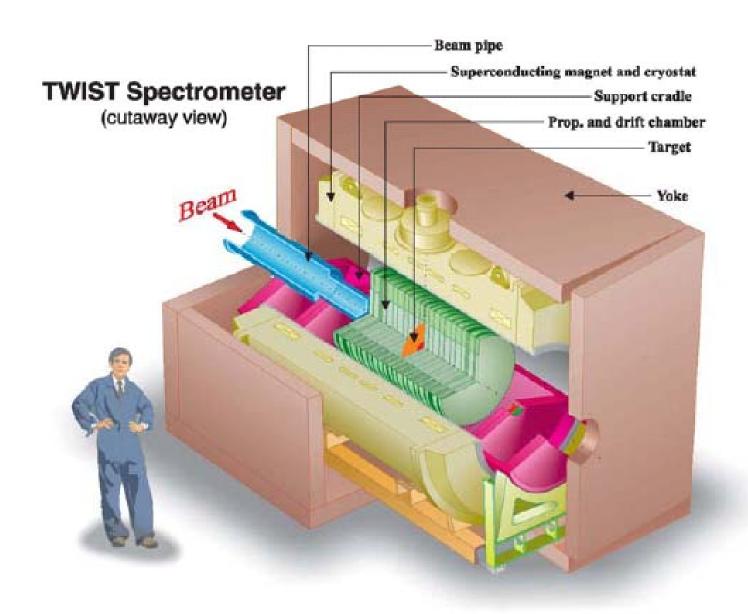
One LCTPC testbeam scenario

2008

- · Q1-fieldcage, endcap, electronics, software collected at Desy
- · Q2-commission LP1 + test with cosmics
- Q3/4-start R&D tests w/ 6 GeV/c beam

2009

- Q1/2-more R&D measurements at Desy
- Q3/4-move to Fermilab, test with ILC beam structure with unchanged LP1 hardware/software


2010

- · More tests with PCMAG, then with 3-4T magnet
- **2011**
 - Test of true prototype LCTPC endplate+electronics

Small Prototype R&D		
Device	Lab(years)	Test
SP1	KEK(2007-2008)	Gas tests, gating configurations
SP2,SP3	Fermilab(2008-2009)	Performance in jet environment
SPn	LCTPC groups $(2007-2009)$	Performance, gas tests, dE/dx measurements,
		continuation of measurements in progress
		by groups with small prototypes

Candidate magnets discussed at lcws07: maybe not feasible

- Triumf (Twist) Magnet (Madhu Dixit)
 - · 2 T
 - · 1m φ, 2.2m length
 - Available beginning 2008
- KeK (Amy) Magnet (Takeshi Matsuda)
 - · 3 T
 - · 2.4m φ, 1.6m length
 - Available now (in principle)

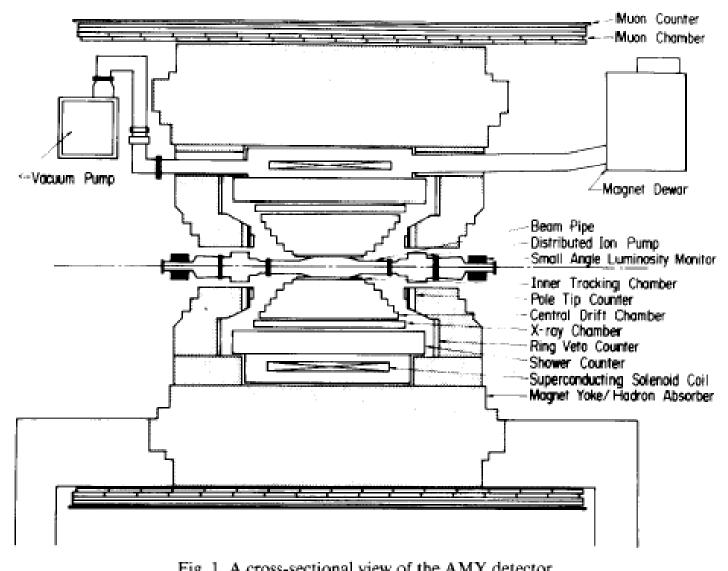


Fig. 1. A cross-sectional view of the AMY detector.