ALCPG LoopVerein, Fermilab, Oct 23, 2007

Tools for the ILC -What's Needed from Theorists?

Aurelio Juste Fermi National Accelerator Laboratory

The Power of Precision Physics

- The main strength of the ILC resides on its precision and model independence
 ⇒ will complement the LHC by providing essential information to interpret and exploit its discoveries.
- Here I will focus on EW, Top/QCD and Higgs Physics.
- Precise measurements of EW (e.g. M_W) and QCD (e.g. α_s) parameters essential to provide precise theoretical calculations, constrain models of New Physics, extrapolate to GUT scale, ...
- Fully outlining the top quark and Higgs profiles will be critical to unravel the secrets of EWSB and/or flavor physics.
- The anticipated high experimental accuracy must be matched/exceeded by theoretical predictions. In many cases, this requires beyond state-of-art calculations/tools.

What Kind of Tools?

Roughly three categories of tools:

- Precise calculations of masses, mixing angles, couplings, partial decay rates, etc. Typically needed to a high order in perturbation theory.
- Tools that allow to compute production rates and event kinematics for signal and background processes:
 - There is a tension between number of legs and the number of loops.
 - They become more and more useful the more differential the prediction is (e.g. allows to reweigh LO Monte Carlo predictions).
 - Most useful tools for experimentalists are MC event generators.
- 3) Tools that allow to combine measurements of different quantities in the context of a particular model to extract information on other model parameters.

In this talk I won't try to give an overview of existing tools, but rather use particular measurements at the ILC to illustrate the level of sophistication needed in these tools.

Monte Carlo Event Generators

An experimentalist's wish list:

Matrix element calculation:

- Include radiative effects in the initial state
 - Beamstrahlung + beam energy spread (parameterized from data);
 - Bremsstrahlung (ideally ME calculation to NLO EW with soft-photon exponentiation).
- Ability to select beam polarization.
- Often
 - may be needed to NⁿLO EW and/or QCD ($n\geq 1$);
 - may be needed up to 10 external legs (e.g. ttH);
 - should avoid on-shell top/W/Z (ILC detectors have a a resolution $\leq \Gamma_{W,Z}$);
 - should include interfering backgrounds.
- Full spin transmission in decay accounted for.
- Explicit information on color flow in event and/or final state polarization.

• Parton shower

- Interfaced to parton shower MC (PYTHIA, HERWIG,...)
- Consistent matching between LO/NLO matrix element and PS (e.g. CKKW formalism)
- Hadronization model
 - Will it need to be retuned? Unclear how much of the tuning performed at LEP absorbed limitations in the ME/PS modeling...
- Particle decays
 - Interfaced to dedicated packages (EVTGEN, TAUOLA)

Luminosity and Energy

- Precise measurements of luminosity and luminosity-weighted center-of-mass energy ($<\sqrt{s}>$) critical for many precision measurements.
- Luminosity spectrum:
 - Precision goal: ~0.1%
 - Interested in dL/d \sqrt{s} distribution and not only integral.
 - Via acollinearity in Bhabha events (~20-140 mrad)
 - Interested in extracting universal spectrum including ONLY beam energy spread and beamstrahlung components.

• Luminosity-weighted center-of-mass energy:

- Precision goal: ~10⁻⁵ (M_W), ~10⁻⁴ (m_t)
- $e^+e^- \rightarrow Z\gamma \rightarrow \mu^+\mu^-\gamma$ (acollinearity method) or $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ (acollinearity + energy)

• Will need a very precise theoretical prediction: $e^+e^- \rightarrow ff$ to N²LO EW in a MC event generator.

The Role of Precision Observables

 The possibility to measure EW observables very precisely

Experimental uncertainties

	Today	Tevatron/LHC	ILC	Giga-Z
$\Delta sin^2 \theta_l^{eff}$ (x10 ⁵)	16	20	(6)	1.3
ΔM_W [MeV]	25	15-20	(10)	7
∆m _t [GeV]	1.8	1.0-1.5	0.1	

opens new areas for high precision tests of EW theories:

- Within the SM: $\Delta m_H/m_H \sim 7\%$
- Within MSSM: in conjunction with other direct measurements, obtain information about new heavy states beyond direct reach.
- In general, place stringent constraints on extensions of the SM (e.g. S,T parameters)
- Very precise theoretical predictions required to fully exploit the anticipated experimental accuracy.

The Role of Precision Observables

Three types of theoretical uncertainties:

Primordial: associated with the extraction of the observable from the measured quantities.

Example: M_W from σ_{WW} vs \sqrt{s}

- Goal: $\Delta M_W^{th} \sim 1 \text{ MeV} \Rightarrow (\Delta \sigma_{WW} / \sigma_{WW})^{th} \sim 0.05\% !!!$
- Full O(α) corrections to e⁺e⁻ → 4f recently completed:
 ~2% effect compared to IBA at threshold!!
- Remaining uncertainties:
 - NLL corrections: O(0.1%)
 - Higher order corrections to Coulomb singularity: O(0.2%)

\Rightarrow Still some work ahead...

 Parametric: due to dependence on other parameters, which are only known to limited precision (e.g. M_w(m_t))

 $\begin{array}{lll} \Delta m_t = 1.5 \; \text{GeV} \Rightarrow \Delta M_W = & 9 \; \text{MeV}, \; \Delta sin^2 \theta_{eff} = 4.5 \times 10^{-5} \\ &= 0.1 \; \text{GeV} \Rightarrow \Delta M_W = & 1 \; \text{MeV}, \; \Delta sin^2 \theta_{eff} = 0.3 \times 10^{-5} \end{array}$

 \Rightarrow Will not likely be the limiting factor...

- Intrinsic: due to uncalculated higher order corrections.
 - $\Delta M_W^{intr} \sim 4 \text{ MeV} (SM), \Delta M_W^{intr} \sim 5-11 \text{ MeV} (MSSM)$
 - Full 2-loop corrections to sin²θ₁^{eff} recently completed (Awramik,Czakon, Freitas).
 - Estimated uncertainty (dominated by missing $O(\alpha^2 \alpha_s)$ corrections): $\Delta sin^2 \theta_l^{eff} \sim 5 \times 10^{-5}$

 \Rightarrow Still some work ahead...

Top Pair Production at Threshold

- Large Γ_t : cutoff for non-perturbative QCD effects
 - Top decays before top-flavored hadrons or ttquarkonium bound states can form.
 - Use non-relativistic pQCD to compute σ_{tt} near threshold.
- Remnants of toponium S-wave resonances induce a fast rise of σ_{tt} near threshold.

Basic parameters: σ_{tt} (m_t, α_{s} , Γ_{t})

- Lineshape significantly distorted due to:
 - Beamstrahlung: coherent radiation due to beam-beam interactions. Must be measured precisely (acollinearity in Bhabha events).
 - Bremsstrahlung (ISR): can be calculated accurately
 - Need precise determination of dL/d \sqrt{s} and \sqrt{s} >.
- Convergence of calculation sensitive to m_t definition used: pole mass is not IR-safe

 $\Rightarrow \sigma_{\!\scriptscriptstyle t\! t}{}^{{}_{\text{peak}}}$ not stable vs \sqrt{s}

Solution is to use threshold masses: e.g. 1S mass (=1/2 the mass of the lowest tt bound state in the limit $\Gamma_t \rightarrow 0$).

High accuracy in absolute normalization requires velocity resummation.

State-of-art (NNLL): $(\Delta \sigma_{tt} / \sigma_{tt})_{QCD} \sim 6\%$

m_t from a Threshold Scan

Top Pair Production at Threshold

- Goal: 3% TOTAL precision ⇒ important to take into account previously neglected %-level effects: Weak corrections (Γ_t+non-resonant W⁺bW⁻b background), QED corrections, interfering backgrounds ⇒ a lot of work ahead!
- Another motivation for such precision is the possibility of a 1% measurement of α_s .
- Finally, not only σ_{tt} but also differential observables are important!
 - Exploit additional experimental information from A_{FB}, dσ/dp_t, s_t,...
 - Additional sensitivity to m_t , α_s and Γ_t
 - Reduce correlations
 - \Rightarrow Simultaneous determination of parameters possible when using all threshold observables.
 - Non-factorizable QCD corrections important in differential observables (NLO calculation available).
- Need MC event generator including current state-ofart, to perform detailed studies on differential observables (including the effect of experimental cuts/reconstruction).

Top Couplings to W/Z Bosons

- Precise (=per-cent level) and model-independent measurements of top quark interactions to W/Z could yield critical information on the mechanism for EWSB.
- Strengths of the ILC:
 - Large samples: ~200k events/year at \sqrt{s} =500 GeV
 - Beam polarization
 - High experimental accuracy
- Main observables:
 - Inclusive polarization observables: e.g. A_{LR}
 - Angular distributions of final state products
- Some of the available tools:
 - Total cross section to N²LO QCD and NLO EW
 - Event generators:
 - e⁺e⁻→6f LO (Lusifer, EETT6F) Combined
 - e⁺e⁻→tt to NLO EW (Topfit)
 - e⁺e⁻→(tt)→WbWb to NLO QCD (C. Macesanu, L. Orr)
 - Recently (hep-ph/060112): 2-loop QCD corrections to ttγ/Z vertex functions.
- Will need MC event generator for e⁺e⁻→tt→6f to at least NLO QCD and EW for precise measurement of top quark properties in the continuum (cross section, mass, couplings).

Event shape observables

- Sensitive to the 3-jet nature of the particle flow: e.g. thrust, jet masses, jet rates, etc
- Procedure: form a differential distribution, correct for detector/hadronization effects and fit a pQCD prediction to the data, allowing $\alpha_s(M_Z)$ to vary. Till recently, state-of-art was NLO.
- Uncertainty dominated by theory: $\alpha_s(M_Z) = 0.121 \pm 0.001 (\exp) \pm 0.005 (\mathrm{theory}) \ \text{[S. Bethke 06]}$
- A 1% measurement is experimentally feasible but need to go beyond NLO.
- After a number of years, the NNLO calculation is finally available and implemented in EERAD3 program!
- Still need to evaluate whether this is sufficient for a 1% measurement.

Measurement of α_s

Ratio Method

- Make use of the inclusive ratios $\Gamma_z^{had}/\Gamma_z^{lept}$, $\Gamma_\tau^{had}/\Gamma_\tau^{lept}$, which depend on α_s via radiative corrections. Current state of the art is NNLO.
- Pros: inclusive observables suffer from small experimental systematics (e.g. Δα_s(exp syst)~0.001@ LEP/CLEO) Cons: require large statistics (e.g. Δα_s(stat)~0.0025 @ LEP from 16M Z events using Γ_z^{had}/ Γ_z^{lept})
- GigaZ: ~10⁹ Z events $\Gamma_{z}^{had}/\Gamma_{z}^{lept}$: $\Delta \alpha_{s}(stat) \sim 0.0004$, $\Delta \alpha_{s}(exp syst) \sim 0.0008$

Current estimates of theoretical uncertainties:

- Conservative: last calculated term (O(α_s^3)) ; $\Delta \alpha_s$ (theo)~0.002
- "Standard" (optimistic): estimated O(α_s^4) term; $\Delta \alpha_s$ (theo)~0.0006
- Scale variation: m_z/3 3 m_z ; $\Delta \alpha_{s}(\text{theo})\text{-+}0.002$ –0.00016
- $\Gamma_{\tau}^{\text{had}}/\Gamma_{\tau}^{\text{lept}}$: $\Delta \alpha_{s}(\text{stat+exp syst}) \sim 0.001$ already at LEP/CLEO!!!!

Considerable debate about theoretical uncertainties: $\Delta \alpha_s$ (theo)~0.001 \leftrightarrow 0.005 If the theoretical uncertainties improved/clarified, this could offer a further 1%-level measurement.

Ongoing N³LO QCD calculations...

Higgs Couplings

- Precise and model-independent measurements of Higgs couplings to gauge bosons and fermions crucial to determine the nature of the Higgs sector (SM, MSSM,...)
- Higgs production mechanims:

Higgstrahlung (dominant at √s=350 GeV)

.

WW-fusion (dominant at √s=1 TeV)

- Measurement of Higgs couplings based on measurement of Higgs cross sections and BRs. Anticipated experimental accuracy ~few %.
- Need precise theoretical predictions for total cross sections and partial widths.
 - Basically already in place. Main limitation appears to be parametric theoretical uncertainties (α_s, m_b, m_c) [See talk by Heather Logan]
 - Such calculations should be implemented in MC event generators so that experimental acceptance corrections can be precisely estimated as well.
- Also important is the development of global fitting tools (e.g. HFITTER), implementing state-of-art theoretical predictions, for optimal combination of observables and treatment of correlations.

Top-Higgs Yukawa Coupling

o (fb)

1

- The top-Higgs Yukawa coupling is the largest coupling of the Higgs boson to fermions. Precise measurement important since the top quark is the only "natural" fermion from the EWSB standpoint.
- Can be determined via cross section measurement: $\sigma_{tth} \propto g_{tth}^2$ • $\sigma_{ttb}(Born) \sim 0.2(2.5)$ fb at $\sqrt{s}=500(800)$ GeV for m_h=120 GeV

(Includes only effects of BS and ISR via structure function approach)

High luminosity required ($\geq 1 \text{ ab}^{-1}$) for a precise . measurement:

 \Rightarrow ~40(500) events/year at \sqrt{s} =500(800) GeV

- Spectacular signatures, e.g.
 - tth(h \rightarrow bb) \rightarrow I+2j+4b, 4j+4b
 - tth(h \rightarrow WW) \rightarrow I+6j+2b, I[±]I[±]+4j+2b
- **Previous studies:** •

 \sqrt{s} =800 GeV, L=1 ab⁻¹, $\Delta g_{ttH}/g_{tth} \sim 6(10)\%$ for m_µ=120(190) GeV

Use of b-tagging and sophisticated multivariate analyses crucial.

Dominant background is tt+jets. Assumes it can be controlled in the tail of the distribution to the 5% level.

Top-Higgs Yukawa Coupling

Issues:

- Signal cross section computed for $2 \rightarrow 3$ process. Available: NLO QCD (large effects ~1.5 near tth threshold): uncertainty ~10% (too large) NLO EW (partial cancellation between photonic and weak corrections)
- Must improve significantly degree of sophistication of background prediction, e.g.:
 - $2 \rightarrow n$ (n ≥ 6) LO ME calculation properly interfaced to parton shower. NON-TRIVIAL!!!
 - $e^+e^- \rightarrow (tt) \rightarrow WbWbjj$, WbWbQQ to NLO QCD, from where to extract HF k-factors
 - $\bullet \quad e^{\scriptscriptstyle +}e^{\scriptscriptstyle -} \to ttZ \text{ to NLO EW}$
 - ..
 - \Rightarrow Not very different from the issues that basically killed ttH as a discovery channel at LHC...
- First top-Higgs Yukawa coupling will be at $\sqrt{s}=500$ GeV:
 - σ_{ttH} down by x10, σ_{tt} up by 70% wrt \sqrt{s} =800 GeV
 - tt dynamics is non-relativistic \Rightarrow must use vNRQCD as in the tt threshold.

Considering σ_{tth} enhancement due to:

- Large QCD resummation effect: ~x2.4 for m_h=120 GeV (theoretical uncertainty still not quantified)
- Use of beam polarization:

~x2.1 for (P(e⁻),P(e⁺)) = (-0.8,+0.6) Taking this into consideration, anticipate: $(\Delta g_{ttH}/g_{tth})_{stat}$ ~10% for m_H=120 GeV, L=1 ab⁻¹

hep-ph/0512246

0.8

NN output (hhqq)

0.2

0.4

0.6

 \Rightarrow Same background modeling issues as for ttH!!!

Estimated statistical precision: 15-20% for $m_h=120$ GeV.

Conclusions

- Precise theoretical predictions are critical to exploit the physics potential of the ILC.
- Significant progress has been made over the last few years, but still much remains to be done.
- In particular, MC event generators implementing higher order calculations should become "routine tools" at the ILC, and on this front we are still in a very early stage.
- The precise modeling of multi-jet final states via the interface of HO matrix element calculations and parton showers, especially when heavy quarks and/or unstable particles are involved, requires further work. This is particularly relevant for several high-profile measurements involving the top quark either as signal or background.
- These and many others are very challenging, and in many cases multi-year, projects but of a critical nature and which should receive strong support from the community and funding agencies.

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.