GenEvA Framework	
0000000000	

GenEvA: A New Framework For Event Generation

Frank Tackmann

University of California, Berkeley Lawrence Berkeley National Laboratory

ALCPG Workshop 2007 Fermilab, October 22–26, 2007

Work with Christian Bauer and Jesse Thaler

Outline

- Overview
- Toy GenEvA

Openational Preliminary Results

< **∂** >

GenEvA Framework ●000000000	Techniques 000	Preliminary Results
Motivation		

Motivation

- Growing need and availability of precise theoretical calculations
 - more and more NLO or even NNLO results
 - Subleading log resummation, power corrections (e.g. in SCET)
- Make these available to experiments (more easily and more quickly)
 - Need a generic way to use inclusive parton-level calculations to get exclusive hadron-level events

Partonic Calculations vs. Algorithmic Tools

- Separate partonic calculations from algorithms
 - Calculations should not have to know specifics of implementations

< A >

GenEvA: Generate Events Analytically

Goals and Benefits of GenEvA

- Provide *generic* and *straightforward* framework to map inclusive parton-level calculations into exclusive hadron-level events
 - Let user think in terms of inclusive partonic cross sections
 - Avoid having to think about algorithms on case by case basis
- Use most accurate available prediction for each part of phase space

Idea behind

- Use parton shower as phase-space generator to distribute points (events) in multiplicity, flavor and phase space
- Otermine exact probability dP for each point (event) to be generated
- **(2)** Reweight to any desired distribution $d\sigma$ on event-by-event basis

$$w = \mathrm{d}\sigma/\mathrm{d}P$$

• Partonic Regime: Includes full field theory information

Any inclusive calculation with the notion of a matching scale

GenEvA Framework

0000000000

Preliminary Results

Preliminary Results

Three Regimes of Event Generation

- Partonic Regime: Includes full field theory information
 - Any inclusive calculation with the notion of a matching scale
- Showering Regime: Defined in terms of splitting probabilities
 - Any parton shower that can start showering at a given scale
- Hadronization: Pythia, Herwig

Separation between Partonic and Showering via matching scale Q_{match}

Frank Tackmann (UCB/LBNL)

< A >

$Q_{ m match}$ Dependence

Showering has logarithmic Q_{match} dependence

- Leading Q_{match} dependence is property of QCD not a specific shower
- Canceling Q_{match} dependence is theoretical not algorithmic issue
- Sufficient to include neccessary Q_{match} dependence in calculations

In GenEvA

- Q_{match} dependence in Partonic can be included
 - Analytically: using resummed calculation (NLO, subleading logs)
 - Numerically: on-the-fly via parton shower phase-space generation
- Value of Q_{match} is fluid and determined on event-by-event basis
 - ▶ Increase Q_{match}: Fewer final states in Partonic, more Showering
 - Decrease Q_{match} : More final states in Partonic, less Showering
- Smooth transition between Partonic and Showering

000000	000	000000

Toy Version of GenEvA

Toy cross sections

$$\frac{\mathrm{d}\sigma_B}{\mathrm{d}x} = B\delta(x)\,,\qquad \frac{\mathrm{d}\sigma_V}{\mathrm{d}x} = a\left(\frac{B}{\epsilon} + V\right)\delta(x)\,,\qquad \frac{\mathrm{d}\sigma_R}{\mathrm{d}x} = aB\frac{R(x)}{x^{1+\epsilon}}$$

$$\sigma_{
m total} = B + aV + aB \int_0^1 {
m d}x \, {R(x)-1\over x}$$

Toy shower

Splitting function:
$$Q(x) \xrightarrow{x \to 0} R(x) \xrightarrow{x \to 0} 1$$

$$\Delta_Q(x_1,x_2) = \exp\left(-a\int_{x_2}^{x_1}\mathrm{d}x\,rac{Q(x)}{x}
ight)$$

Splitting probability:

$$\mathrm{d}P(x;x_{\mathrm{start}}) = a\,rac{Q(x)}{x}\,\Delta_Q(x_{\mathrm{start}},x)\,\mathrm{d}x$$

Frank Tackmann (UCB/LBNL)

GenEvA Framework	Techniques	Preliminary Results

Master Formula

$$\sigma = \sigma_p^{(0)}(x_{\text{match}}^{(0)}) \operatorname{MC}(x_{\text{match}}^{(0)}) + \int_{x_{\text{match}}^{(0)}}^{1} \mathrm{d}x_1 \operatorname{d}\sigma_p^{(1)}(x_1; x_{\text{match}}^{(1)}) \operatorname{MC}(x_{\text{match}}^{(1)})$$

• $\sigma_p^{(0,1)}(x_{\text{match}}^{(n)})$: Analytic partonic cross sections for 0 and 1 emissions

- x_{match} dependence is primarily a scale dependence
- Singularities cancel analytically
- $MC(x_{match})$: Showering starting at x_{match}
- $x_{\text{match}}^{(0,1)}$: Matching scale for 0- and 1-parton emission
 - $x_{\text{match}}^{(1)} = x_1$ to avoid dead zone
 - $x_{\text{match}}^{(0)}$ some low scale (could be as low as x_{cut})

< A >

Preliminary Results

Partonic Cross Sections at Tree Level

Tree-level generator

$$egin{aligned} \sigma_p^{(0)}(x_{ ext{match}}) &= B \ & \sigma_p^{(1)}(x) = aB \, rac{R(x)}{x} \end{aligned}$$

Total and one-emission cross sections

$$egin{aligned} \sigma &= B + aB \int_{x_{ ext{match}}}^1 \mathrm{d}x \, rac{R(x)}{x} \ & \sigma^{(1)}(x) &= aB \, rac{1}{x} egin{cases} R(x) & (x > x_{ ext{match}}) \ Q(x) \, \Delta_Q(x_{ ext{match}}, x) & (x < x_{ ext{match}}) \end{aligned}$$

- σ correct to $\mathcal{O}(1)$, and $\sigma^{(1)}(x)$ to $\mathcal{O}(a)$
- Logarithmic $x_{
 m match}$ dependence in σ and $\sigma^{(1)}(x)$

Partonic Cross Sections at Tree Level

Tree-level generator Sudakov improved

$$egin{aligned} &\sigma_p^{(0)}(x_{ ext{match}}) = B\,\Delta_Q(1,x_{ ext{match}}) \ &\sigma_p^{(1)}(x) = aB\,rac{R(x)}{x}\,\Delta_Q(1,x) \end{aligned}$$

Total and one-emission cross sections

$$egin{aligned} \sigma &= B + aB \int_{x_{ ext{match}}}^1 \mathrm{d}x \, rac{R(x) - Q(x)}{x} \, \Delta_Q(1,x) \ \sigma^{(1)}(x) &= aB \, rac{1}{x} egin{cases} R(x) \, \Delta_Q(1,x) & (x > x_{ ext{match}}) \ Q(x) \, \Delta_Q(1,x) & (x < x_{ ext{match}}) \ (x < x_{ ext{match}}) \end{aligned}$$

- σ correct to $\mathcal{O}(1)$, and $\sigma^{(1)}(x)$ to $\mathcal{O}(a)$
- Logarithmic x_{match} dependence in σ and $\sigma^{(1)}(x)$ cancels
 - Example of ME/PS merging, but no special algorithm needed

000	000000

Partonic Cross Sections at NLO

NLO Slicing

$$egin{aligned} &\sigma_p^{(0)}(x_{ ext{match}}) = ilde{B} \ & ilde{B} = \sigma_{ ext{total}} - aB \int_{x_{ ext{match}}}^1 \mathrm{d}x \, rac{R(x)}{x} \ &\sigma_p^{(1)}(x) = aB \, rac{R(x)}{x} \end{aligned}$$

Total and one-emission cross sections

 $\sigma = \sigma_{
m total}$

$$\sigma^{(1)}(x) = a \, rac{1}{x} egin{cases} BR(x) & (x > x_{ ext{match}}) \ ilde{B}Q(x) \, \Delta_Q(x_{ ext{match}}, x) & (x < x_{ ext{match}}) \end{cases}$$

• σ and $\sigma^{(1)}(x)$ correct to $\mathcal{O}(a)$, no x_{match} dependence in σ

• Two sources of Logarithmic x_{match} dependence in $\sigma^{(1)}(x)$

Partonic Cross Sections at NLO

NLO Slicing Sudakov improved = NLO Subtraction [MC@NLO]

$$egin{aligned} &\sigma_p^{(0)}(x_{ ext{match}}) = ilde{B}\,\Delta_Q(1,x_{ ext{match}}) \ & ilde{B} = \sigma_{ ext{total}} - aB\int_{x_{ ext{match}}}^1 \mathrm{d}x\,rac{R(x) - Q(x)}{x} \ &\sigma_p^{(1)}(x) = aB\,rac{R(x) - Q(x)}{x} + a ilde{B}\,rac{Q(x)}{x}\,\Delta_Q(1,x) \end{aligned}$$

Total and one-emission cross sections

 $\sigma = \sigma_{
m total}$

$$\sigma^{(1)}(x) = a \, rac{1}{x} egin{cases} BR(x) + (ilde{B} - B)Q(x)\,\Delta_Q(1,x) & (x > x_{ ext{match}}) \ ilde{B}Q(x)\,\Delta_Q(1,x) & (x < x_{ ext{match}}) \end{cases}$$

• σ and $\sigma^{(1)}(x)$ correct to $\mathcal{O}(a)$, no x_{match} dependence in σ

• Two sources of Logarithmic x_{match} dependence in $\sigma^{(1)}(x)$ cancel

< 🗗 >

Partonic Cross Sections at NLO

Simple NLO [POWHEG inspired]

GenEvA Framework

 σ

$$egin{aligned} & {}^{(0)}_p(x_{ ext{match}}) = \sigma_{ ext{total}} \, \Delta_T(1, x_{ ext{match}}) \ & \sigma_p^{(1)}(x) = a \, \sigma_{ ext{total}} \, rac{T(x)}{x} \, \Delta_T(1, x) \ & T(x) = rac{B}{\sigma_{ ext{total}}} \, R(x) \qquad \Delta_T = \expigg(-a \int \mathrm{d}x \, rac{T(x)}{x}igg) \end{aligned}$$

Techniques

Total and one-emission cross sections

 $\sigma = \sigma_{
m total}$

$$\sigma^{(1)}(x) = a \, rac{1}{x} egin{cases} BR(x) \, \Delta_T(1,x) & (x > x_{ ext{match}}) \ \sigma_{ ext{total}} \, Q(x) \, \Delta_T(1,x_{ ext{match}}) \Delta_Q(x_{ ext{match}},x) & (x < x_{ ext{match}}) \end{cases}$$

- σ and $\sigma^{(1)}(x)$ correct to $\mathcal{O}(a)$
- Still no logarithmic x_{match} dependence in $\sigma^{(1)}(x)$

More Partonic Cross Sections

Everything boils down to calculating partonic cross sections.

Straightforward to generalize

- More emissions at tree level
- Combining NLO and additional tree level emissions, e.g.
 - 2+3 jet: analytic NLO matrix element
 - 4 jet: MadGraph
 - ▶ 5 jet: AMEGIC++
 - 6 jet: ALPGEN
 - 7 jet: O'Mega
 - ▶ 8+ jets: Parton Shower with quantum interference [Nagy, Soper]

In principle also straightforward, modulo technical details

- NNLO (+ additional tree level emissions)
- Resummed expressions (NLL, NNLL)

The Parton Shower as Phase Space Generator

Advantages

- Automatically covers all of multiplicity, flavor, phase space
- Automatically has the right singularity structure
- As a by-product, resums leading logarithms
- It's fast!

Challenges

- Need to know precise probability distribution dP
 Use analytic parton shower algorithm [Christian Bauer, FT, arXiv:0705.1719]
 - Momentum conservation at each vertex
 - Full analytic control over dP
- Must take into account that phase space is covered multiple times by parton shower

GenEvA Framework	Techniques O●O	Preliminary Results
The Event Weight		

$$w = \frac{\mathrm{d}\sigma}{\mathrm{d}P}$$

< **∂** >

• $d\sigma = \sigma(\Phi) d\Phi$ is function of Lorentz invariant phase space Φ

- $d\sigma = \sigma(\Phi) d\Phi$ is function of Lorentz invariant phase space Φ
- $dP = \mathcal{P}(\Sigma) d\Sigma$ is function of full parton shower history $\Sigma = \{t_i, z_i\}$

GenEvA Framework 0000000000	Techniques O●O	Preliminary Results
The Event Weight		

$$w\equiv w(\Phi)=rac{\sigma(\Phi)}{\mathcal{P}[\Sigma(\Phi)]J[\Sigma(\Phi)]}$$

• $d\sigma = \sigma(\Phi) d\Phi$ is function of Lorentz invariant phase space Φ

- $dP = \mathcal{P}(\Sigma) d\Sigma$ is function of full parton shower history $\Sigma = \{t_i, z_i\}$
- Mapping $\Sigma \to \Phi \equiv \Phi(\Sigma)$, Jacobian $J(\Sigma) = d\Sigma/d\Phi$

GenEvA Framework	Techniques	Preliminary Results
000000000	000	000000
The Event Weight		

$$w\equiv w(\Phi)=rac{\sigma(\Phi)}{\sum_i \mathcal{P}[\Sigma_i(\Phi)]J[\Sigma_i(\Phi)]}$$

• $d\sigma = \sigma(\Phi) d\Phi$ is function of Lorentz invariant phase space Φ

- $dP = \mathcal{P}(\Sigma) d\Sigma$ is function of full parton shower history $\Sigma = \{t_i, z_i\}$
- Mapping $\Sigma \to \Phi \equiv \Phi(\Sigma)$, Jacobian $J(\Sigma) = d\Sigma/d\Phi$
- Each Φ can have multiple $\Sigma_i(\Phi)$ that map to it

Э

Have to sum over all parton shower histories Σ_i(Φ) that map to the same point Φ in phase space.

GenEvA Framework	Techniques OO●	Preliminary Results
Overcounting		

$$w\equiv w(\Phi)=rac{\sigma(\Phi)}{\sum_i \mathcal{P}[\Sigma_i(\Phi)]J[\Sigma_i(\Phi)]}$$

Summing over $\mathcal{P}[\Sigma_i(\Phi)]$ is hard

- Requires to explicitly construct all $\Sigma_i(\Phi)$ for given Φ
- Same problem in subtraction methods

GenEvA Framework	Techniques ○○●	Preliminary Results
Overcounting		

$$w \equiv w(\Sigma) = rac{\sigma(\Sigma)}{\mathcal{P}(\Sigma)}$$

Instead make weight function of Σ

< **∂** >

GenEvA Framework 000000000	Techniques OO●	Preliminary Results
Overcounting		

$$w \equiv w(\Sigma) = rac{\sigma[\Phi(\Sigma)]}{\mathcal{P}(\Sigma)J(\Sigma)}\,\hat{lpha}(\Sigma)$$

Instead make weight function of Σ

• Define
$$\sigma(\Sigma) = rac{\sigma[\Phi(\Sigma)]}{J(\Sigma)} \, \hat{\alpha}(\Sigma)$$
 with $\hat{\alpha}(\Sigma) = rac{\alpha(\Sigma)}{\sum_i \alpha(\Sigma_i)}$

• $\hat{\alpha}(\Sigma)$ distributes $\sigma(\Phi)$ among $\Sigma_i(\Phi)$, can be chosen freely

- Trivial but inefficient: $\alpha(\Sigma) = 1$
- Ideal but hard: $\alpha(\Sigma) = \mathcal{P}(\Sigma)J(\Sigma)$
- General: Pick $\alpha(\Sigma_i) \approx \mathcal{P}(\Sigma) J(\Sigma)$ and compute $\sum_i \alpha(\Sigma_i)$ using **ALPHA** algorithm [ALPGEN]

Already works

- $e^+e^- \rightarrow \text{jets} (\text{jet} = u, d, s, c)$
- Use MadGraph matrix elements (currently up to 6 final states)
 - Pure matrix elements
 - Sudakov improved resummed matrix elements
- Showering regime covered by underlying analytic parton shower

On paper, but not in C++ yet

- NLO matrix elements
 - resummed NLO (one-loop 2 jet + tree-level 3 jet)
 - + additional resummed tree-level matrix elements

GenEvA	Framework
00000	00000

Comparison with MadGraph/MadEvent

	process	MadEvent	GenEvA
	4j	36483 ± 49	36439 ± 69
Reweight to pure MadGraph ME and compare with MadEvent Cross section in ab for • $E_{CM} = 1000 \text{ GeV}$ • $Q_{cut} = 100 \text{ GeV}$	$u ar{u} g g$	14055 ± 32	14003 ± 44
	$dar{d}gg$	3490 ± 9	3498 ± 22
	u ar u c ar c	283.4 ± 1.3	273 ± 7
	u ar u d ar d	175.9 ± 0.9	184 ± 6
	$u ar{u} u ar{u}$	131.9 ± 0.9	135 ± 4
	5j	2540.5 ± 3.3	2550 ± 6
	$u ar{u} g g g$	909.8 ± 2.1	916 ± 3
	$dar{d}ggg$	227.4 ± 1.0	229 ± 2
	$uar{u}car{c}g$	54.44 ± 0.31	54 ± 1
	$u ar{u} d ar{d} g$	33.96 ± 0.31	35 ± 1
	$u ar{u} u ar{u} ar{u} ar{u} ar{g}$	25.41 ± 0.16	25 ± 1
			4 ₫ >

Frank Tackmann (UCB/LBNL)

Preliminary Results

Comparison with MadGraph/MadEvent

Frank Tackmann (UCB/LBNL)

GenEvA: A New Framework For Event Generation

ALCPG07, Fermilab, 2007-10-23 16 / 19

Fully Inclusive Sample

Match to MadGraph ME

Contributions of 2, 3, 4, 5, 6 jet matrix elements for

- $E_{\rm CM} = 1000 \, {\rm GeV}$
- $Q_{\rm match} = 50 \, {
 m GeV}$
- $Q_{\rm cut} = 10 \, {
 m GeV}$

Transverse Momentum of Jet 6

3 (**fb**)

10

10

10-3

10

20 30 40 50 60 70 80

GenEvA Framework

Techniques

Preliminary Results

Matching Matrix Elements and Parton Shower

ALCPG07, Fermilab, 2007-10-23 18 / 19

GenEvA Framework

Techniques

Preliminary Results

Matching Matrix Elements and Parton Shower

Frank Tackmann (UCB/LBNL)

GenEvA: A New Framework For Event Generation

ALCPG07, Fermilab, 2007-10-23 18 / 19

GenEvA is a *framework* to turn theory calculations into exclusive events

- Any matrix element with the notion of a matching scale
- Any parton shower that can start showering at a given scale
- Simple matching, independent of jet algorithm and parton shower
- Analytic parton shower can be used as efficient phase space generator

Need help from experts to extend philosophy to the full range of interesting processes (pp, W/Z/t production, ...)

Backup Slides

▲ □
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓</li

Backup Slides ●OO

Weighted vs. Unweighted samples

$$N_{ ext{eff}} = rac{\left[\sum_n w_n
ight]^2}{\sum_n w_n^2}$$
 vs. $N_{ ext{unw}} = rac{\sum_n w_n}{w_{ ext{max}}}$

- N_{unw}: expected number of events after unweighting
 - Poor efficiency from rare events with large weights
 - Systematic error due to unknown true w_{\max} or truncation
- N_{eff}: measures statistical power of weighted sample
 - > Number of events of a statistically equivalent unweighted sample
 - If $N_{
 m eff}/N$ too small, partially unweight until $N_{
 m eff} \lesssim N$
- Always $N_{
 m eff} > N_{
 m unw}$, usually $N_{
 m eff} \gg N_{
 m unw}$

$e^+e^- ightarrow 5j$	$N_{ m eff}/N$	$N_{ m unw}/N$	
MadEvent	0.89	0.11	(0.5 truncated)
GenEvA	0.40	0.03	
	0.89	0.12	(partially unweighted)

Backup Slides

Master Formula Generalized

$$\sigma = \sigma_p^{(0)}(x_{\text{match}}^{(0)}) \operatorname{MC}(x_{\text{match}}^{(0)}) + \int_{x_{\text{match}}^{(0)}}^{1} \mathrm{d}x_1 \operatorname{d}\sigma_p^{(1)}(x_1; x_{\text{match}}^{(1)}) \operatorname{MC}(x_{\text{match}}^{(1)}) + \int_{x_{\text{match}}^{(0)}}^{1} \mathrm{d}x_1 \int_{x_{\text{match}}^{(1)}}^{x_1} \mathrm{d}x_2 \sigma_p^{(2)}(x_1, x_2; x_{\text{match}}^{(2)}) \operatorname{MC}(x_{\text{match}}^{(2)}) + \cdots$$

• $\sigma_p^{(n)}(x_1,\ldots,x_n;x_{\mathrm{match}}^{(n)})$: Analytic partonic cross sections for n emissions

- $x_{\text{match}}^{(n)}$ dependence is primarily a scale dependence
- Singularities cancel analytically
- $MC(x_{match})$: Showering starting at x_{match}

• $x_{\text{match}}^{(n)} \equiv x_{\text{match}}^{(n)}(x_n)$: Matching scale for *n*-parton emission

• $n = n_{\text{max}}$: $x_{\text{match}}^{(n)} = x_n$ to avoid dead zone

• $n < n_{\max}$: $x_{\max}^{(n)} < x_n$ arbitrary, could be as low as x_{cut}

< @ >

Backup Slides

Matching Dependence

Frank Tackmann (UCB/LBNL)

GenEvA: A New Framework For Event Generation