

Introduction to Sherpa

Frank Krauss

IPPP Durham

ALCPG07, Fermilab, 23.10.2007

イロト イ団ト イヨト イヨト

2

IPPP

Outline

- Introduction: Event generators
- Signals & backgrounds at the parton level
- ③ From parton level to exclusive studies at hadron level
- Oetour: Improved shower formulations
- 5 Preview: Cluster fragmentation
- 6 Modelling hadron/tau decays
- 🕖 Summary & Outlook

Simulation's paradigm

Basic strategy

Divide event into stages, separated by different scales.

• Signal/background:

Exact matrix elements.

• QCD-Bremsstrahlung:

Parton showers (also in initial state).

Multiple interactions:

Beyond factorization: Modeling.

• Hadronization:

Non-perturbative QCD: Modeling.

Introducing SHERPA

T.Gleisberg, S.Höche, F.K., A.Schälicke, S.Schumann and J.C.Winter, JHEP 0402 (2004) 056

- New event generator, written from scratch in C++.
- Fully automated matrix element generation,
- Parton shower implementation (similar to PYTHIA), new improved parton shower formulations in preparation,
- Unique feature: Multijet ME+PS merging,
- Cluster hadronization model (still to be tuned to data), also interface to string fragmentation of Pythia,
- Hadron and tau decays,
- Underlying event according to old Pythia model, new model based on BFKL evolution to be released.

• • • • • • • • • • • •

Automated cross section calculation AMEGIC++

F.K., R.Kuhn, G.Soff, JHEP 0202 (2002) 044.

< ロ > < 同 > < 回 > < 回 > < 回

- Uses helicity/recursion methods;
- Helicity method supplemented with "factoring out" (taming the factorial growth)
- Phase space integration through multi-channeling (i.e. one phasespace mapping/Feynman diagram)
- Implemented & tested models: SM, SM+AGC, THDM, MSSM, ADD.
- Tested in > 1000 SM & > 500 MSSM channels.
- Still under development (towards higher multis, more models, ...)

Standard Model @ Linear Collider

Consistency of HELAC/PHEGAS & AMEGIC++

T.Gleisberg, F.K., C.Papadopoulos, A.Schälicke and S.Schumann, Eur. Phys. J. C 34 (2004) 173

Implementing CSW recursion relations: A snaphot

F.Cachazo, P.Svrcek and E.Witten, JHEP 0409 (2004) 006

• Obtained summing over colours and helicities, sampling much better

Jet cross sections @ LHC, $k_{\perp}^{\min} = 20 \text{GeV}$

Process	helicity	MHV where possible	MHV only
			(≤ 2 quark lines)
$jj \rightarrow jj$	745.85 μb±0.10%	745.85 μb±0.10%	
	57 s	44 s	
jj → jjj	81.274 μb±0.20%	81.274 μb±0.20%	
	826 s	166 s	
$gg \rightarrow gggg$	10.112 μb±0.23%	10.145 µb±0.23%	
	1.5 ks	0.6 ks	
$jj \rightarrow jjjj$	23.23 μb±0.27%	23.245 μb±0.26%	23.208 μb±0.26%
	35 ks	7.6 ks	5.8 ks
$gg \rightarrow ggggg$	2.6592 μb±0.16%	2.6915 μb±0.15%	
	131 ks	41 ks	
jj → jjjjjj	not possible	7.3829 μb±0.25%	7.3294 μb±0.17%
		970 ks	295 ks

Parton level	Parton to hadron level	Hadronization	Hadron decays	

Integration

• HAAG (colour dipoles) + multichanneling + VEGAS

HAAG: A.v.Hameren, C.Ppapdopoulos EPJC25 (2002) 563

(日) (同) (三) (三)

• Characteristic number for event generation: Unweighting eff. = average/maximal value of $\mathrm{d}\sigma$

Unweighting efficencies:

$gg \rightarrow ggg$	jj → jjj	$gg \rightarrow gggg$	jj — jjjj	$gg \rightarrow ggggg$	jj → jjjjj
6.2514%	1.6213%	1.5692%	0.4944%	0.8631%	0.1908%

イロト イ団ト イヨト イヨト

From partons to hadrons

- Experimental definition of jets based on hadrons.
- But: Hadronization through phenomenological models

(need to be tuned to data).

ME vs. PS

- MEs: hard, large-angle emissions; interferences.
- PS: soft, collinear emissions; resumation of large logarithms.
- Combine both, avoid double-counting.

From partons to hadrons

Parton showers

• Universal pattern of soft & collinear radiation:

$$\mathrm{d}\sigma_{N+1} \sim \mathrm{d}\sigma_N \, \sum_{a \in N} \, \frac{\mathrm{d}t_a}{t_a} \, \alpha_s \, \mathrm{d}z \, P_{a \to bc}(z) \, .$$

- Introduce "resolution of partons" (e.g. p_{\perp}^{\min}) \implies Large logarithms at each emission.
- Resummation of logs in Sudakov form factor:

$$\Delta_{a}(t, t_{0}) = \exp\left[-\int_{t_{0}}^{t} \frac{\mathrm{d}t'}{t'} \int_{z_{-}}^{z_{+}} \mathrm{d}z \,\alpha_{s} \,P_{a \to bc}(z)\right]$$

Interpretation: No-emission probability (→ simulation).

Combining MEs & PS

Idea (Example: $e^+e^- \rightarrow$ hadrons):

- Define k_{\perp} -jets with $Q_{\rm cut}^2 = y_{\rm cut} Q^2$, $Q = E_{\rm c.m.}$
- Probabilistic interpretation of Sudakov form factor:

$$\begin{aligned} \mathcal{R}_{2}(y_{\mathrm{cut}}) &= \Delta_{q}^{2}(Q, Q_{\mathrm{cut}}) \\ \mathcal{R}_{3}(y_{\mathrm{cut}}) &= 2\Delta_{q}(Q, Q_{\mathrm{cut}}) \\ \int_{Q_{\mathrm{cut}}}^{Q} \mathrm{d}q \, \frac{\Delta_{q}(Q, Q_{\mathrm{cut}})}{\Delta_{q}(q, Q_{\mathrm{cut}})} \Gamma_{q}(q, Q) \Delta_{q}(q, Q_{\mathrm{cut}}) \Delta_{g}(q, Q_{\mathrm{cut}}) \end{aligned}$$

- No emission off outgoing/internal lines.
- Emission at q: Integrated splitting function $\Gamma_q(q, Q) = \frac{2C_F}{\pi} \frac{\alpha_s(q)}{q} \left[\log \frac{Q}{q} \frac{3}{4} \right]$
- Obvious trick: replace Γ_q by full matrix element.

- Soft emissions correctly resummed in PS
- Method:
 - Separate Jet-production/evolution by Q_{jet} (k_{\perp} algorithm).
 - Produce jets according to LO matrix elements
 - re-weight with Sudakov form factor + running α_s weights,
 - veto jet production in parton shower.
- Process-independent implementation.

<ロト < 回 > < 回 > < 回 > < 回 >

Sherpa = tree-level matrix elements with α_s scales and Sudakov form factors.

Combining MEs & PS: Independence on Q_{jet}

F.K., A.Schälicke, S.Schumann and G.Soff, Phys. Rev. D 70 (2004) 114009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

New Showers

Merging issues: Dependence on scales

p_{\perp} distribution of 1st jet @ Tevatron

IPPP

Azimuthal decorrelations of jets at the Tevatron

V.Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 94 (2005) 221801

New Showers

Comparison with data from Tevatron

p_{\perp} of Z-bosons

A. Affolder et al. [CDF Collaboration], Phys. Rev. Lett. 84 (2000) 845.

F. Krauss Introduction to Sherpa

IPPP

イロト イ団ト イヨト イヨト

▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ 二面 - のへの

IPPP

IPPP

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

F. Krauss Introduction to Sherpa IPPP

IPPP

Extrapolation to LHC : p_{\perp} of jets in inclusive Z+jets

- Influence of more jets.
- Displayed here: x-sections.
- Difference in shape & x-sec.

Shower based on Catani-Seymour splitting kernels

First discussed in: Z.Nagy and D.E.Soper, JHEP 0510 (2005) 024.

Implemented in: S.Schumann and F.K., arXiv:0709.1027 [hep-ph];

M.Dinsdale, M.Ternick and S.Weinzierl, arXiv:0709.1026 [hep-ph]

- Catani-Seymour dipole subtraction terms as universal framework for QCD NLO calculations.
- Factorization formulae for real emission process:
- Full phase space coverage & good approx. to ME.

Example: final-state final-state dipoles

$$\begin{array}{l} \text{splitting: } \tilde{p}_{ij}+\tilde{p}_k \rightarrow p_i+p_j+p_k \\ \text{variables: } y_{ij,k}=\frac{p_ip_j}{p_ip_j+p_ip_k+p_jp_k} \,, \quad z_i=\frac{p_ip_k}{p_ip_k+p_jp_k} \\ \text{consider } \mathbf{q}_{ij} \rightarrow \mathbf{q}_i\mathbf{g}_j: \; \langle V_{\mathbf{q}_i\mathbf{g}_j,k}(\tilde{z}_i,y_{ij,k}) \rangle = C_F \left\{ \frac{2}{1-\tilde{z}_i+\tilde{z}_iy_{ij,k}} - (1+\tilde{z}_i) \right\} \end{array}$$

F. Krauss Introduction to Sherpa

IPPP

Shower based on Catani-Seymour splitting kernels

P.Abreu et al. [DELPHI Collaboration], Z. Phys. C 59 (1993) 357

Shower based on Catani-Seymour splitting kernels

P.Abreu et al. [DELPHI Collaboration], Z. Phys. C 59 (1993) 357

Shower based on Catani-Seymour splitting kernels

A. Affolder et al. [CDF Collaboration], Phys. Rev. Lett. 84 (2000) 845

Results for $p\bar{p} \rightarrow \ell^+ \ell^-$

Shower based on Catani-Seymour splitting kernels

B.Abbott et al. [D0 Collaboration], Phys. Rev. Lett. 82 (1999) 2457

V.Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 94 (2005) 221801

Results for $p\bar{p} \rightarrow \text{jets}$

Shower based on Catani-Seymour splitting kernels

F.Abe et al. [CDF Collaboration], Phys. Rev. D 50 (1994) 5562

Results for $p\bar{p} ightarrow$ jets

Hadronization

Preconfinement

- Underlying: Large N_c-limit (planar graphs).
- Follows evolution of color in parton showers: at the end of shower color singlets close in phase space.
- Mass of singlets: peaked at low scales $\approx Q_0^2$.

Hadronization

Cluster model

B.R.Webber, Nucl. Phys. B 238 (1984) 492 J.Winter, F.Krauss, and G.Soff, Eur. Phys. J. C36 (2004) 381

- Split gluons into qq
 q
 q pairs, form singlet clusters:

 continuum of meson resonances.
- Decay heavy clusters into lighter ones; (here, many improvements to ensure leading hadron spectrum hard enough, overall effect: cluster model becomes more string-like);
- if light enough, clusters → hadrons.
- Naively: spin information washed out, decay determined through phase space only → heavy hadrons suppressed (baryon/strangeness suppression).
- Primordial cluster mass spectrum universal.

イロト イ団ト イヨト イヨト

- * ロ > * 個 > * 注 > * 注 > … 注 … の < C

F. Krauss Introduction to Sherpa IPPP

æ

<ロ> (日) (日) (日) (日) (日)

Summary & outlook

Outlook

- Immediate future: finish SHERPA (time horizon: this year)
 - Validate SHERPA for Higgs production processes
 - How about SUSY at LHC ?
 - Finish implementation of hadronization & hadron decays
 - New model for underlying event (BFKL-based)
- Near future: extend SHERPA (time horizon: next year)
 - Implement more models (RPV, UED, Gravitinos)
 - New parton shower(s) (better suited for MC@NLO)
 - Play: Phenomenology with a nice & versatile tool
 - Start going NLO (QCD) in merging
- Far future: go to precision level (time horizon: five years)
 - Play more
 - Further validation vs. (LHC) data; further learning
 - Go QCD NLO in BOTH matrix elements and merging

Summary & outlook

Outlook

Science fiction: Prepare for LC physics

- QED ISR in the spirit of YFS for e⁺e⁻ collisions
- Include electroweak NLO corrections
- Electroweak showering/Sudakov effects (resummation)
- Photon-photon physics (underlying event in e^+e^-)
- Include Weizsaecker-Williams, Beamstrahlung
- Go to NNLO QCD (if possible), may need new shower.

イロト イ団ト イヨト イヨト