

Radiation Hardness Studies in a CCD with High-Speed Column Parallel Readout

André Sopczak

(Lancaster University) On behalf of the LCFI Collaboration

Outline

- ILC and CCD Vertex Detector
- Background rates and radiation damage
- Charge Transfer Inefficiency (CTI)
- TCAD simulation results
- Comparison with an analytical model
- Test-stand measurements in preparation
- Conclusions

International Linear Collider: Vertex Detector

LCFI: Linear Collider Flavour Identification collaboration

Vertex Detector will provide precise 3D space points along tracks.

800M channels of $20\mu m \times 20\mu m$ pixels.

 $< 0.1\% X_0$ layer thickness to minimize multiple scattering. Inner radius 14mm.

1% occupancy in the innermost layer. High-speed readout, up to 50 MHz; 20 readouts during 1 ms bunch train.

Requires radiation hardness studies.

The CCD: Charge Collection

The CCD: Charge Transfer

ILC Background and CCD Radiation Damage

Estimation of Background Rates

Background and Trap Density

Expected	Parameter		electrons		neutrons	
background in the ILC at 14 mm radius for 1 year operation.	average energy		~ 10MeV		~ 1MeV	
	no. particles / bx / cm ²		3.5		0.01	
	fluence		0.5.1012		1.6 ·10 ⁹ _{Vogel}	
	(annual dose)		0.5.1	0.7	1.10 ⁹ Maruy	
		0.47				
	Source	- 0.17e	V trap	- 0.44	4eV trap	
Estimated trap densities for simulation purpose. Simulation: about 3 or many more	electrons	~ 3 · 10 ¹¹ cm⁻ ³		~ 3 · 10 ¹⁰ cm ⁻³		
	neutrons	~7.1·10 ⁸ cm ⁻³		~1.1·10 ¹⁰ cm ⁻³		
		~4.5·10 ⁸ cm ⁻³		~7.0·10 ⁹ cm⁻ ³		
	total	~3·10 ¹¹cm⁻³		~4.1·10 ¹⁰ cm ⁻³		
				~3.7·10 ¹⁰ cm ⁻³		
	Used in simulations	1.10 ¹² cm⁻³		1.10 ¹² cm⁻ ³		
years of						•

A. Sopczak, ALCPG'07, 25-10-07

operation.

CTI Modeling - Principle

Traps capture electrons from the signal charge.
Electrons are emitted later:

capture τ_c and emission τ_e time constants.

Strongly dependent on temperature and trap energy level (seconds to ns)

CCD Simulations in ISE-TCAD

ISE-TCAD package (version 7.5) - **DESSIS** program (**D**evice **S**imulation for **S**mart Integrated **S**ystems).

Simplified 2D model containing only one pixel of CCD structure.

Epitaxial layer is doped with boron (p-type)

additional doping profiles: substrate, p+ implants, input gate, and output gate. The contact nodes for the pixels are polysilicon with silicon nitride and silicon oxide. layers beneath them.

CTI Definition and Modelling in TCAD

Simulations

Parameters of CTI simulations:

- trap energy levels (0.17 and 0.44 eV)
- clock frequency (10 to 50 MHz)
- temperature (130 to 440 K)
- trap concentration (10^8 to 10^{13} /cm³)
- hit (pixel) occupancy (0.1% to 1%)
- trap energy level variation 0.17±0.005 eV

Clock-voltage induced CTI related to power consumption. A. Sopczak, ALCPG'07, 25-10-07

CTI: Trap Concentrations

CTI: Hit (Pixel) Occupancies and Frequencies

CTI: Trap Energy Level Variations

Analytic Model and Hit (Pixel) Occupancies

CTI as a Function of Voltage Applied to Gates (Clock Voltage Induced CTI)

Experimental Setup at Liverpool University

Conclusions

- CCD with high-speed column-parallel readout simulated using the ISE-TCAD package with two trap energy levels.

- Optimal operation temperature about 230K to minimize CTI.
- CTI values determined for different
- a) readout frequencies,
- b) trap concentrations,
- c) hit (pixel) occupancies,
- d) variation of trap energy levels.
- Good agreement with expectations from analytical model.
- Comparison with data from irradiated CCDs essential.
- Test system in preparation to measure CTI for irradiated CCDs.
- High-speed CCD vertex detector development on track as vital part of a future ILC detector.