

Study with a cheated PFA

Akiya Miyamoto KEK ALCPG07, October 2007

This talk is based on a paper, arXiv:0709.3147 by Sumie Yamamoto (Graduate School for Advanced Study), Keisuke Fujii, Akiya Miyamoto (KEK)

1

Introduction

- Purpose of this study
 - To clarify what limits the jet energy resolution. It will help optimize PFA
 - Know the ultimate jet energy resolution attainable with an ideal PFA algorithm
- What is "Cheated PFA" ?
 - Track reconstruction: Cheated finder +Kalman Fitter
 - Calorimeter clustering and Track-Cluster matching: Based on MC truth information

Detector Model

- Detector model: Similar to GLD, except Calorimeter
- Calorimeter: Tower structure ECAL: 27.1X₀ (38 layers of 4mm Pb+ 1mm Scint.), Rin = 2.1m $\sigma_E / E \approx 0.15 / \sqrt{E(GeV)}$ (single particle)
 - HCAL: 6.4 λ (130 layers of 8 mm Pb ; 2mm Scint.) $\sigma_E/E \approx 0.43/\sqrt{E(GeV)}$ (single particle)

Study of performance

- Z0 events
 - Kink treatment
 - Detector resolution effects
- Boosted ZO: using ZZ events
- ZH events

Kink Treatment-Study using ZO

 $e^+e^- \rightarrow Z \rightarrow q\overline{q}$ (uds only, no ISR)

Kink mother scheme works better for ZO events V0 treatment: no significant effect on ZO mass resolution

Effect of detector resolution

Replace 4 momenta of PFOs by MC truth. → See detector resolution effects.

Remaining contribution (Acceptance, Neutrino, energy double counting) : 0.829 GeV

- -- Undetected particle: tail on the lower mass side
- -- Double counting : tail on the higher mass side (Neutral kink daughters of particle masses kicked out from the detector materials

Remaining Contributions

Tracing break points of particle trajectories,

Eliminate double counted energies:

 σ =2.20GeV \rightarrow 2.01 GeV Double count contribution~ 0.92 GeV (Double count only ~ 0.45 GeV, but with detector resolution effect ~0.92 GeV)

Energy Resolution of Jet energy

$e^+e^- \rightarrow Z \rightarrow q\overline{q}$ at higher energies

$$\sigma_{Ejet} \approx 0.23 \times \sqrt{E_{jet}(GeV)}$$

Slight increase in σ_{HD} is Mainly un-corrected energy dependence of calibration constant of hadron calorimeter

Resolution of boosted ZO

- Jet mass resolution as a function of Z momentum
- Using the process, $e^+e^- \rightarrow Z^0Z^0 \rightarrow v\overline{v} + q\overline{q}(q=d,u,s)$ To see pure detector effects, ISR off, $\Gamma_{ZO}=0$

$\sigma(Mz)$ vs Ez

Jet mass resolution as a function of the momentum of ${\sf Z}$

$$\frac{\sigma_M}{M} \approx \frac{1}{2} \sqrt{\left(\frac{\sigma_{E_1}}{E_1}\right)^2 + \left(\frac{\sigma_{E_2}}{E_2}\right)^2}$$
$$\approx \frac{a}{2} \sqrt{\frac{1}{E_1} + \frac{1}{E_2}}$$
$$\approx 1/\sqrt{E_Z} \text{ if } E_1 = E_2$$

 $\sigma(Mz)$ improves with Pz, but not as quickly as 1/JEz

 $e^+e^- \rightarrow ZH \text{ process}$

- Ecm=350GeV, Mh=120GeV, $Z \rightarrow v\overline{v}$; including BS& ISR
- Mh is calculated as the invariant mass of all visible particles.

Without any treatment

Factors which affect $\sigma(Mh)$

	σ _{Mh} (GeV)	σ improvement (GeV)
No treatment	3.54	
Eliminate double count daughters	3.12	1.67
Eliminate ISR γ s	2.90	1.15
Add energy of v in Higgs decay	2.40	1.67
(tail in the distribution is removed)		
Add undetected particles	2.19	0.98

Summary

- PFA performance was studied using a cheated PFA
- For a model detector (similar size as GLD),
 - $\sigma(Mz)$ ~2.2 GeV. (~ 0.23/ JE)
 - Contributions to the resolutions are
 - Tracker: 3%, ECAL:21%, HCAL 62%, Double-Count: 4%, Acceptance 10%
- From studies of high energy $q\overline{q}$ events, $\sigma(Ejet) \propto \int Ejet$
- From studies of Boosted Z, σ(Mz) improves with Ez, but not as quickly as 1/JEz
- In the case of Mh study in e+e- \rightarrow ZH process, ISR γ s, v and double counted daughters make contributions similar to HCAL.