

RTML Vacuum System RDR Summary FermiLab October 24, 2007

John Noonan Yusuke Suetsugu, Paolo Michelato GDE Vacuum Technical Group

- Accuracy of manufacturing
 - Total length = $\pm 2 \text{ mm}$ for 10 m.
 - Tilt between the end flanges is 0.5 degree.
 - Displacement of the duct against the axis in the horizontal and vertical plane is ±2 mm.
 - Slant of the end flanges against the axis of the duct is 1 degree.
 - Displacement of the center of end flanges against the axis of the duct is less than ± 0.5 mm.
 - Width of a gap inside should be less than 0.5 mm.
 - Inside step should be less than 0.5 mm.

- Gate valves
 - All metal valves
 - Each region (EFF1 and so on) has at least one gate valve.
 - Valves are located every 250 m at minimum
 - Apertures of gate valves are :

[D: Diameter, A: Aperture size] D < 60 mm : A = ICF114 $60 \text{ mm} \le D < 100 \text{ mm} : A = ICF152$ $100 \text{ mm} \le D < 150 \text{ mm} : A = ICF203$ Etc.....

Assumptions

- Beam Pipe
- The thickness (*t* mm) of duct will follow the conditions as follows.
- D: Diameter, t: thickness
- *D* < 20 mm : *t* = 1 mm
- 20 mm < *D* < 60 mm : *t* = 2 mm
- 60 mm < D < 100 mm : *t*= 3 mm
- 100 mm < D : *t* = 4 mm
- The gap between a duct and cores of a magnet should be larger than 1 mm, in order to avoid any interference with magnets. The beam pipes with a different aperture should be connected through a taper, in order to suppress HOM excitation, if necessary.
- In general the transport beam pipe is stainless steel. The exceptions are where heat loads are present.
- Outgassing Rate
- The thermal gas desorption rate, *q*th, will be assumed as
- Then, if the pipe diameter is D [m], the linear gas desorption rate, Qth, is
- $Qth = pD \times qth$ Pa m3s-1m-1.
- Unbaked outgassing rate: qth = 5×10-8 Pa m3s-1m-2, or 5×10-11 Torr I s-1cm-2
- Baked outgassing rate: = 1x10-9
- Passivated outgassing rate: = 1x10-9, it could be as low as 2x10-10 but before
- we take credit for that it should be tested.

Insulating vacuum system

4 TMP pumping units: 2 with LD (leak detector) + 2 large screw pump for fore pumping

General remarks

ic

- Basically, obtained from major vacuum manufactures.
- Discussed among TS leaders to find reasonable numbers in all regions.
- Based on TS leaders' experience so far.
 - · For example, in Asia, KEK B-factory (~1996).
- The present cost estimation, however, is not yet well optimized.
 - · Diameter, lengths, etc.

- Included terms
 - Beam ducts
 - Bellows chambers (with finger-type RF-shielding)
 - Pumps (and controllers, Rough pumping unit)
 - Vacuum gauges (and controllers)
 - Gate valves (and controllers, with RF-shielding)
 - Manifolds (6 ports for rough pumping unit and gauges)
 - Gaskets, bolts, Supports (in average number)
 - Control cables between components and controllers
 - Interlock box per one gate valve
 - Baking heaters and thermal insulators: Option
 - Preparation before installation, such as assembling, pre-baking of beam pipe, testing, etc.

- · Beam duct (Base)
 - Stain-less steel
 - Including:

- · Detergent cleaning
- · Profit of company, Risk factor
- · Flanges, pumping ports
- No cooling channel

Ø (Diameter)	US\$ /m
20 mm	200
100 mm	300
150 mm	350
200 mm	400

1\$ = 120Yen 1\$ = 1.2 €

Other Beam Duct

Including: External Design Overhead and Profit Flanging and additional ports

Туре	Factors from "Base"
Acid cleaning	X 1.2
Aluminum alloy	X 0.6
SS+Cu coating	X 2
Cu	X 2
With Cooling pipe	X 1.5

SS Chambe rs					
Diameter(m)	Total Length(m)	# of chamber	Material	Unit Cost[US\$/m]	Cost [US\]
0.016	402.2004675	135	SS	200	80440.0935
0.016	575.7823148	508	SS+W	300	172734.6944
0.054	60.33390019	23	SS+W	375	22625.21257
0.054	48.75	17	SS	250	12187.5
{total}	1087.066682	683			287,987.50

264.92

W: Cooling channel

Pumps (Including contro	ller)			
[Pumping Speed]	qty		Unit Cost[US\$]	Cost [US\$]
0.2 m3/s				
0.16 m3/s				
0.12 m3/s		14	950	13,300
0.08 m3/s				
0.04 m3/s	3	833	700	583,100
{total}	8	847		596,400

Manifold for gauge	es (6 ports)		
[Size]	qty	Unit Cost[US\$]	Cost [US\$]
ICF152	2	1,25	0 2,500
1CF114	Global	Design Effort	• • • • • • • • • • 1:
ICF70	9	28	0 2.520

RTML

• • • • • • • • •			
L-angle Valve for roug	gh pumping		
[Size]	qty	Unit Cost[US\$]	Cost [US\$]
ICF152		2 5,33	30 10,660
ICF114			
ICF70	Q) 55	50 4,950
{total}	11		15,610

Gate Valve				
[Size]	qty	Unit Cost[US\$]	Cost [US\$]	
ICF306[EX]				
ICF253				
ICF203				
ICF152				
ICF114		9	7,000	63,000
{total}		9		63,000

RTML

ilr

. .

Rough Pu	mp Unit (Includii	ng Controll	er)			
[set]	qty		Unit Cost[US\$]		Cost [US\$]	
		5		17,000		85,000
Insulator e	except for EDL a	nd SR Line)			
	qty [m]		Unit Cost[US\$]		Cost [US\$]	
		1,087		3		3,261
Support (1	l per one chamb	er)				
	qty		Unit Cost[US\$]		Cost [US\$]	
		683		400		273,200
Gasket (I	CF70 in average	e)				
	qty		Unit Cost[US\$]		Cost [US\$]	
		2,288		7		16,016
Bolt,Nut (6	6 in average)					
	qty		Unit Cost[US\$]		Cost [US\$]	
		13,728		.3		4,118
Interlock b	box (per 1 GV)					
	qty		Unit Cost[US\$]		Cost [US\$]	
		9		500		4,500

- Ambiguity in the present cost estimation
 - Overall specifications and requirements are clear.
 - But, the detailed specification are not yet given.
 - Required pressure

İİİ.

- Accuracy of manufacturing
- Surface treatment
- · Gap between magnets, etc. ..
- Design is not yet fixed. The manufacturer counted a risk factor.
 - · Beam pipe radius, lengths
 - · the structure of RF shielding at pumping port , etc. ..

- Vacuum specifications will be re-evaluated as design evolves.
- Vacuum final design and cost are a derivative of accelerator design.
- Cold vacuum will follow Main Linac design
- Simplification of structures is viable
 - Bellows liners
 - Gate valves
 - Surface treatment and cleaning
- R&D
 - Ways to reduce gas load
 - Quick flange connections