

SiD

muon system

HCAL

and detector concepts

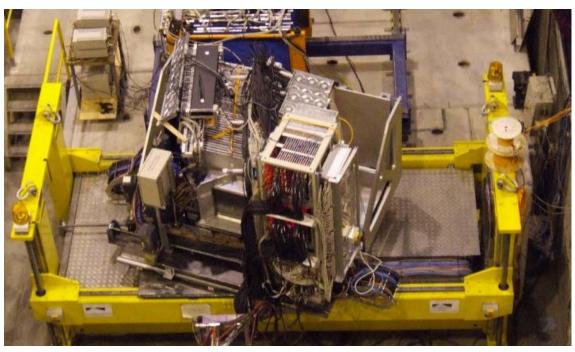
Felix Sefkow

ALCPG07 Meeting at Fermilab Oct 22-26, 2007

The CALICE mission

- Propose the best possible calorimeter system for the ILC
 - consider ECAL and HCAL (and TCMT) together
 - physics prototypes and technical prototypes
- Physics prototypes
 - validate simulations on PFLOW-relevant observables
 - develop and test PFLOW reconstruction algorithms
 - needed for each technology (e.g. scintillator and gas)
- Technical prototypes
 - address integration issues
 - provide basis for cost estimates
 - evidently needed for each technology

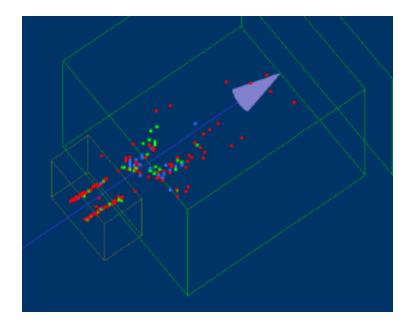
Not part of mission:

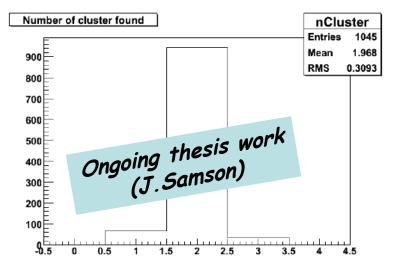

- validate the PFLOW approach
 - depends on overall detector concept and tracking performance
- technology choices
 - provide necessary input
 - operational experience, performance, cost
 - if different strong and weak points, choice depends on concept
 - if show stoppers, choice is obsolete

Test beam mission

- strong synergy from shared infrastructure
 - mechanics, DAQ, software, analysis
- half-way completed: SiW ECAL + SciFe HCAL 10-100 GeV
- missing:
- 1-10 GeV 2008
- scint ECAL 2008
- gas HCAL 2009
- analysis 2010

Felix Sefkow Oct 26, 2007

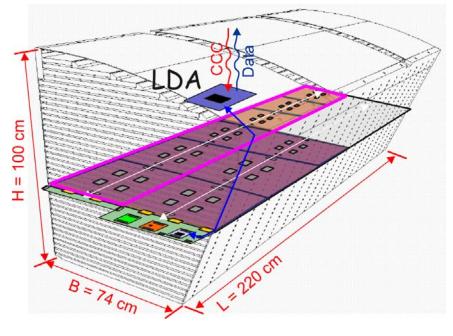

4



PFLOW and test beam

- Thanks to low occupancy, can use "event mixing" techniques
- Measure the confusion term in data and MC

Towards benchmarking the PFLOW performance


- CALICE physics results for the whole ILC (and HEP) community
 - distributions, comparisons to shower MC
- CALICE event-by-event data for collaboration members only
 - airness to groups committed to task sharing
 - involve full detector expertise in extraction of physics conclusions
- CALICE is open to anybody who commits himself to the collaborative spirit
 - rules for publicizing results
 - Sharing the common tasks
- CALICE foresees joint ventures with other groups for common beam tests of limited scope

Technical prototypes

- still find collaborative structure useful
- many common issues common for different technolgies
 - ASIC design, DAQ, s/w
- integration issues (compact structures) largely conceptindependent
- next round of prototyping (e.g. EUDET "module 0") by 2009
 - "demonstrator structures"

- Physics impact of detector performance
 - Benchmarking with fully digitized MC, from test beam experience
- PFLOW algorithms and performance observables
- Optimization of internal parameters
 - granularity: nicely done
 - sampling structure: next: scintillator vs absorber thickness
 - Mechanical design importance of cracks, dead material
- Detector integration boundary conditions
 - make realistic assumptions
 - avialble space, support structure, services
- Calibration methods, band width considerations
 - using physics and background events

Conclusion

Concept groups and R&D collaborations:

- Present task sharing model works well
- Keep it as long as options open on both sides
- Avoids duplications and maximizes efficiency