ALCPG07

Joint Meeting of the

American Linear Collider Physics Group

ILC Global Design Effort

22 - 26 October 2007

Quark charge determination: status and requirements

Sonja Hillert (Oxford) on behalf of the LCFI collaboration

Outline of this talk

> Why quark charge determination is important for physics

- > Measuring quark charge: vertex charge and charge dipole procedure
- > Sensitivity of vertex charge reconstruction to detector design: fast MC results
- > LCFI Vertex Package: software tools for full MC studies including quark charge
- > Aspects of the vertex detector design that studies of quark charge can help optimise

Dependence of physics reach on detector performance

 Flavour tag needed for event selection and reduction of combinatoric backgrounds
 Quark charge sign determination used for measurement of A_{LR}, angular correlations (-> top polarisation) – vertex detector performance crucial

Examples:
 Higgs branching ratios:
 classical example of a process
 relying on flavour tag

e+e- → ZHH:
4 b-jets in final state requiring excellent tagging performance; could profit from quark charge sign selection

Processes requiring quark sign selection: $e+e- \rightarrow b$ bbar

➤ e+e- → bb: indirect sensitivity to new physics, such as extra spatial dimensions, leptoquarks, Z', R-parity violating scalar particles (Riemann, LC-TH-2001-007, Hewett PRL 82 (1999) 4765); quark charge sign selection to large cos θ needed to unfold cross section and measure A_{LR}:

Sensitivity to deviations of extra-dimensions model from SM predicition (S. Riemann):

without quark sign selection

with perfect quark sign selection

Processes requiring quark sign selection: $e+e- \rightarrow t$ tbar

- ightarrow e+e- \rightarrow tt demanding for vertex detector:
- multijet event: final state likely to include soft jets some of which at large polar angle
- flavour tag needed to reconstruct the virtual W bosons and top-quarks
- quark charge sign selection will help to reduce combinatoric backgrounds
- top decays before it can hadronise: polarisation of top quark can be measured from polarisation of its decay products; best measured from angular distribution of s-jet (quark charge)

Measuring quark charge

To measure quark charge efficiently one needs:

- > an excellent vertex detector:
 - pixel-based system
 - few micron point resolution
 - small inner layer radius
 - good polar angle coverage
 - low mass support structure
 - mechanical stability

- topological vertex finding
- flavour tagging
- vertex charge reconstruction (charged hadrons)
- charge dipole reconstruction (neutral B hadrons)

Vertex charge reconstruction

b-jets contain a complex decay chain, from which the charge has to be found
 in the 40% of cases where b quark hadronises to charged B-hadron,
 quark sign can be determined by vertex charge

need to find all stable tracks from

- **B decay chain:**
 - define seed axis
 - cut on L/D (normalised distance between IP and projection of track POCA

onto seed axis)

• tracks that form vertices other than IP

are assigned regardless of their L/D

- > need vertex finding as prerequisite (definition of seed axis)
- > in most analyses, only calculate charge for jet of specific flavour: need flavour tagging
- > probability of mis-reconstructing vertex charge is small for both charged and neutral cases

Charge dipole procedure

- For neutral vertices, quark charge is obtained from the charge dipole formed by B- and D-decay vertex.
- "ghost track" vertexing algorithm (aka ZVKIN) developed at SLD, was shown to yield higher purity for charge dipole than standard ZVTOP code (ZVRES, cf p12)
- advantage: one-prong vertices identified by vertex finder
 increased efficiency, especially at short B decay lengths

> at ILC, charge dipole procedure still to be explored

Performance of charge reconstruction: leakage rates

- \succ define leakage rate λ_0 as probability of reconstructing neutral hadron as charged
- performance strongly depends on low momentum tracks:

largest sensitivity to detector design for low jet energy, large $\cos \theta$

Using vertex charge for detector optimisation

> Using fast MC SGV, studied dependence of leakage rate on vertex detector design:

- compared detectors with different inner layer radii (→ beam pipe radii)
- varied amount of material per detector layer (factor 4 compared to baseline)
- Itranslated into integrated luminosity required to obtain physics results of same significance for processes requiring independent quark charge measurement in 2 jets, increase of beam pipe from 15 to 25 mm has sizeable effect (factor 1.5 – 2)

The LCFI Vertex Package

> The LCFIVertex package provides, in a full MC and reconstruction framework:

- vertex finder ZVTOP with branches ZVRES and ZVKIN (new in ILC environment)
- flavour tagging based on neural net approach (algorithm: R. Hawkings, LC-PHSM-2000-021; includes full neural net package; flexible to allow change of inputs, network architecture
- quark charge determination, currently only for jets with a charged 'heavy flavour hadron'
- First version of the code released end of April 2007:

code, default flavour tag networks and documentation available from the ILC software portal http://www-flc.desy.de/ilcsoft/ilcsoftware/LCFIVertex

> next version planned to be released shortly after ALCPG 2007:

- minor corrections, e.g. to vertex charge algorithm; further documentation
- diagnostic features to check inputs and outputs
- module to derive fit parameters used in joint probability calculation (flavour tag input)
- new vertex fitter based on Kalman filter to improve run-time performance
- For longer term plans see LCFI WP1 presentation at the Vertex Detector Review

ZVTOP vertex finder, Pt-corrected mass

- two branches: ZVRES and ZVKIN (already mentioned when discussing charge dipole)
 The ZVRES algorithm (D. Jackson, NIM A 388 (1997) 247)
 very general algorithm that can cope with arbitrary multi-prong decay topologies
 - 'vertex function' calculated from Gaussian 'probability tubes' representing tracks
 - iteratively search 3D-space for maxima of this function and minimise χ^2 of vertex fit

Flavour tagging approach

- Vertex package provides flavour tag procedure developed by R. Hawkings et al (LC-PHSM-2000-021) as default
- > number of vertices found determines which NN input variables are used:
 - if secondary vertex found: M_{Pt}, momentum of secondary vertex, and its decay length and decay length significance
 - if only primary vertex found: momentum and impact parameter significance in R-φ and z for the two most-significant tracks in the jet
 - in both cases: joint probability in R and z (estimator of probability for all tracks to originate from primary vertex)

> flexible: permits user to change input variables, architecture and training algorithm of NN

Flavour tagging performance (RDR results)

Towards a realistic simulation

- Current simulations are based on many approximations / oversimplifications. The resulting error on performance is at present unknown and could be sizable, especially when looking at particular regions in jet energy, polar angle (forward region!)
- Issues to improve:
- Vertex detector model: replace model with cylindrical layers by model with barrel staves
- GEANT4: switched off photon conversions for time being (straightforward to correct)
- hit reconstruction: using simple Gaussian smearing at present; realistic code exists only for DEPFET sensor technology, not for CPCCDs and ISIS sensors developed by LCFI
- track selection:
 - K_s and Λ decay tracks suppressed using MC information
 - tracks from hadronic interactions in the detector material discarded using MC info only works for detector model LDC01Sc (used for code validation) at present
- current default parameters of the code optimised with fast MC or old BRAHMS (GEANT3) code
- default flavour tag networks were trained with fast MC

Examples of impact of simplifications

- > effects of simplifications can be sizeable;
- note: photon conversions and hadronic interactions in detector material can efficiently be corrected for
- currently making initial checks needed for implementing these corrections

Parameters and aspects of design to be optimised

The Vertex Package, embedded into full MC and reconstruction frameworks,

permits the following aspects of the vertex detector design to be optimised:

- Beam pipe radius
- Sensor thickness, material amount at the ends of the barrel staves
- Material amount and type of mechanical support (e.g. RVC, Silicon carbide foams)
- Overlap of sensors: linked to sensor alignment, tolerances for sensor positions along the beam & perpendicular to it
- Arrangement of barrel staves
- Long barrel vs short barrel plus endcap geometry
- > Study of trade-offs, involving variations of more than one parameter, should be aimed at
- Physics simulation results will be only one of the inputs that determine the detector design – the more decisive input may well be provided by what is technically feasible.

Additional Material

The ZVTOP vertex finder

D. Jackson,

NIM A 388 (1997) 247

- two branches: ZVRES and ZVKIN (also known as ghost track algorithm)
- The ZVRES algorithm: very general algorithm that can cope with arbitrary multi-prong decay topologies
 - 'vertex function' calculated from Gaussian
 - probability tubes' representing tracks
 - iteratively search 3D-space for maxima of this function and minimise χ^2 of vertex fit

> ZVKIN: more specialised algorithm to extend coverage to b-jets with 1-pronged vertices and / or a short-lived B-hadron not resolved from the IP

ALCPG07, Fermilab, 24th October 2007

- additional kinematic information (IP-, B-, D-decay vertex approximately lie on a straight line) used to find vertices
- should improve flavour tag efficiency and determination of vertex charge Sonja Hillert (Oxford)