

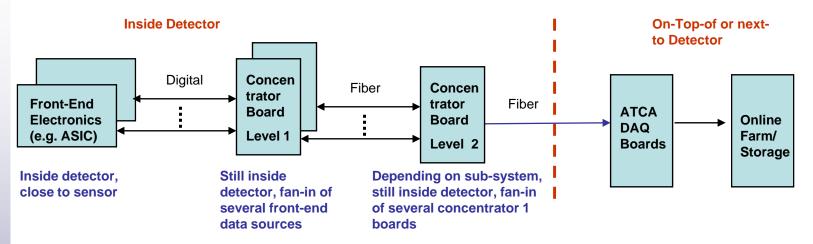
Electronics Systems Issues for SiD Dataflow & Power

Gunther Haller

Research Engineering Group Particle Physics and Astrophysics Division SLAC-Stanford University

October 26, 2007

26 October 2007 SiD Meeting FNAL **(**#)


Overview

- Overall dataflow architecture
- Expected data rates
- Example implementation
 - ATCA system
 - EM CAL sub-system
- Power system

Electronics Architecture

- Total data rate from each front-end relatively small, thus can combine data from several front-ends to reduce number of connections to the outside of the detector
- Front-End ASICs/electronics transmit event data to concentrator 1 boards
 - Digital interface (optical or electrical, e.g. LVDS)
 - **Concentrator 1 boards close to front-end, combining data-streams from several front-end ASICs**
 - Zero-suppression either at front-end or on concentrator 1 boards
 - No additional processing needed at this stage
- Event data from concentrator 1 boards are combined in concentrator 2 boards
 - Multiplexing of concentrator 1 board event data onto fewer fibers
- Event data is transmitted to top or side of detector
 - ATCA crate (see later) to process and switch data packets
 - Online farm for filtering (if necessary)

(#)

Data-Rates

- Question is what are the data-rates coming from each subsystem?
 - Influences architecture for readout
- Assume zero-suppression of data towards the front-end (ASIC's or concentrator 1 board)
- See table on next slides
 - Mostly driven by noise or background hits

Bandwidth into DAQ/Online from each Sub-System

Sub-System	Mean # Hits/Train	#of bytes/hit at level 0	Bandwidth (bits/sec) (5 trains/sec)	
Tracker Barrel	2*10 ⁷	18*	15G	
Tracker Endcap	8*10 ⁶	18*	6G	
EM Barrel	4*10 ⁷	8	13G	
EM Endcap	6*10 ⁷	8	20G	
HAD Barrel	2*10 ⁷	8	6G	
HAD Endcap	4*10 ⁶	8	1.3G	
Muon Barrel	1*10 ⁵	8	32M	
Muon Endcap	1*10 ⁵	8	32M	
Vertex			10M (dominated by layer 1)	
LumCal/BeamCal	tbd		tbd	
Total			~60G	

of bytes for address: 4 bytes, time: 2 bytes, ADC: 2 bytes

*: tracker assumes nearest neighbor logic, adds 2x8 bytes

- Nominal ~60 Gbits/s data rate (750 Mbyte/s)
 - Need to provide margin, e.g. factor of 4
- Example: DAQ being prototyped for LCLS is very scalable, bandwidth is fine, see later slides

DAQ Sub-System

- Based on ATCA (Advanced Telecommunications Computing Architecture)
 - Next generation of "carrier grade" communication equipment
 - Driven by telecom industry
 - Incorporates latest trends in high speed interconnect, next generation processors and improved Reliability, Availability, and Serviceability (RAS)
 - Essentially instead of parallel bus backplanes, uses high-speed serial communication and advanced switch technology within and between modules, plus redundant power, etc

ATCA Crate

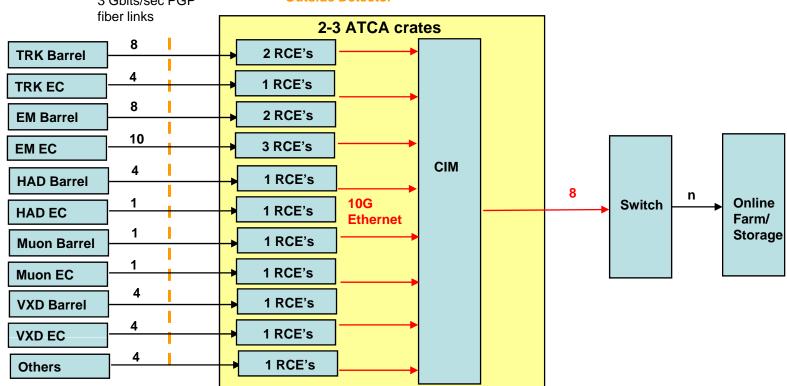
- ATCA used for e.g. SLAC LUSI (LCLS Ultra-fast Science Instruments) detector readout for Linac Coherent Light Source hard X-ray laser project
 - Based on 10-Gigabit Ethernet backplane serial communication fabric
 - 2 custom boards
 - Reconfigurable Cluster Element (RCE) Module
 - Interface to detector
 - Up to 8 x 2.5 Gbit/sec links to detector modules
 - Cluster Interconnect Module (CIM)
 - Managed 24-port 10-G Ethernet switching
- One ATCA crate can hold up to 14 RCE's & 2 CIM's
 - Essentially 480 Gbit/sec switch capacity
 - SiD needs only ~ 320 Gbit/sec including factor of 4 margin
 - Plus would use more than one crate (partitioning)

Reconfigurable Cluster Element (RCE) Boards

- Addresses performance issues with offshelf hardware
 - Processing/switching limited by CPU-memory sub-system and not # of MIPS of CPU
 - Scalability
 - Cost
 - Networking architecture
- Reconfigurable Cluster Element module with 2 each of following
 - Virtex-4 FPGA
 - 2 PowerPC processors IP cores
 - 512 Mbyte RLDRAM
 - 8 Gbytes/sec cpu-data memory interface
 - 10-G Ethernet event data interface
 - 1-G Ethernet control interface
 - RTEMS operating system
 - EPICS
 - up to 512 Gbyte of FLASH memory

Rear Transition Module

Reconfigurable Cluster Element Module


ALL ACEION BURGEN

Cluster Interconnect Module

- Network card
 - 2 x 24-port 10-G Ethernet Fulcrum switch ASICs
 - Managed via Virtex-4 FPGA
- Network card interconnects up to 14 in-crate RCE boards
- Network card interconnects multiple crates or farm machines

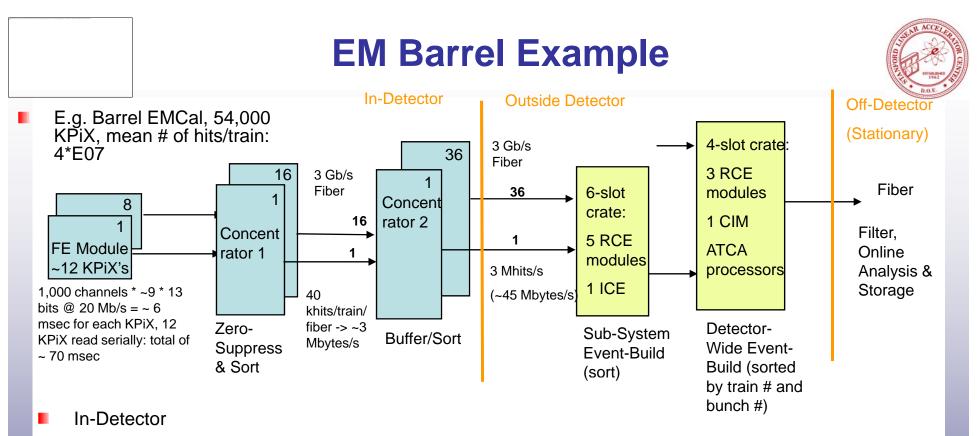
In-Detector S Gbits/sec PGP Giber links DAQ Architecture, Minimum Number of Reconfigurable Cluster Elements Outside Detector

- Could be more 3-G links depending what partitioning is best for on-detector electronics
- Just need to add more RCE's or even a few more ATCA crates
- 1 ATCA crate can connect to up to 14 x 8 Input fibers
- Bandwidth no issue (each ATCA crate can output data to online farm at > 80 Gbit/s)
- No need for data reduction in SiD DAQ, can transfer all data to online processing farm blades

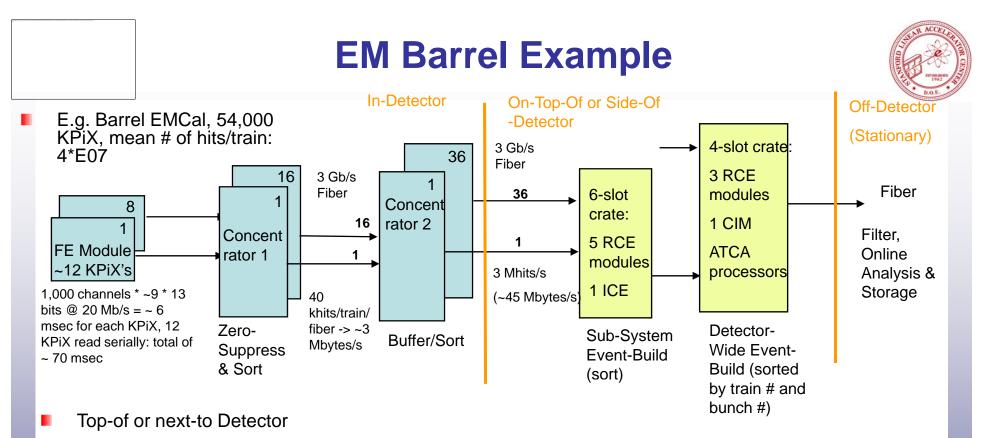
26 October 2007

(#)

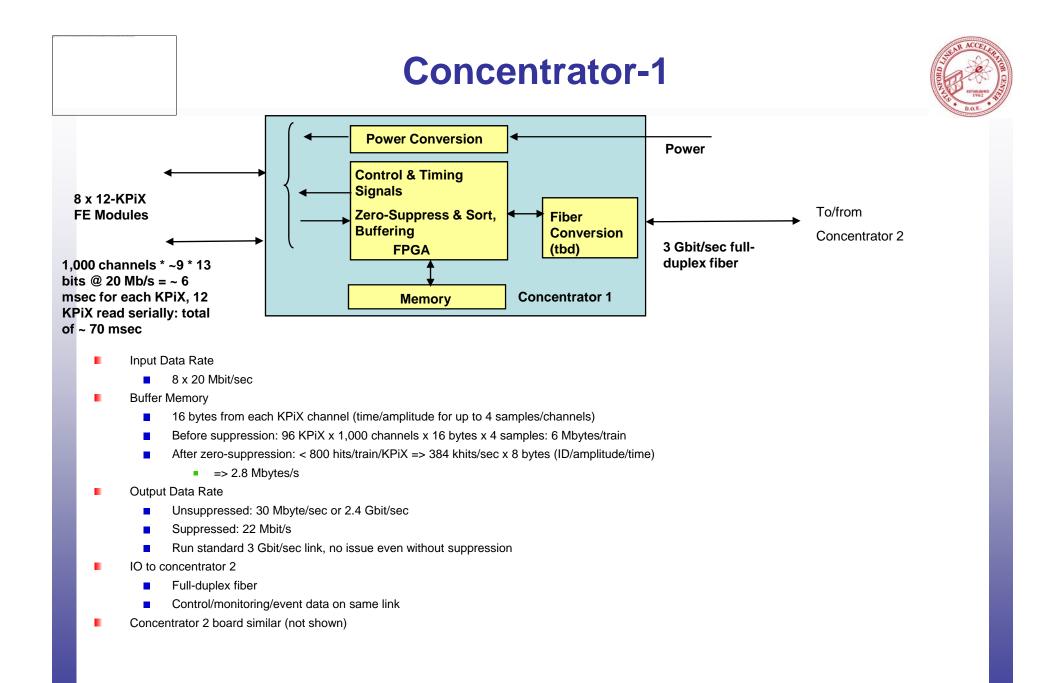
Gunther Haller


SiD Meeting FNAL

haller@slac.stanford.edu


Partitioning

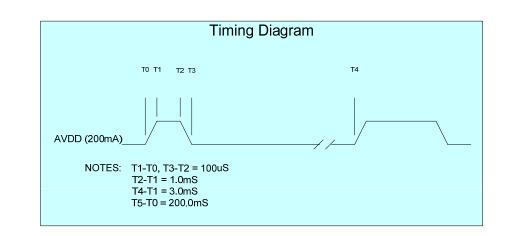
- Although 2 or 3 ATCA crates could handle all the SiD detector data
 - could use one crate for each sub-system for partitioning
 - 2 to 14 slot crates available
 - E.g. one 2-slot crate for each sub-system
 - Total of 1 rack for complete DAQ



- KPIX ASIC as front-end (1,024 channels, serial datain/clock/dataout LVDS interface)
- Concentrator 1 (FPGA based): zero-suppress. Sort total 740 hits/train/Kpix -> 2.8 Mbytes/s for 96 KPIX's (720 hits/train/KPIX * 5 trains/s * 96 KPIX * 8 bytes)
- Concentrator 2 (FPGA based): Sort total of ~45 Mbytes/s
 - Total out of detector: 1.6 Gbytes/sec

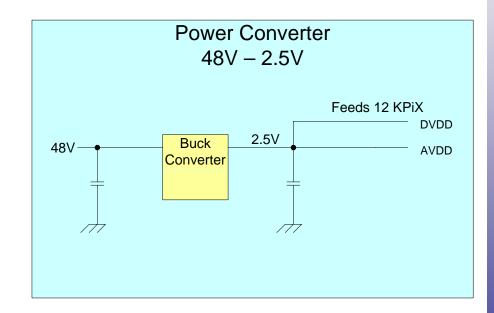
- Readout to outside-Detector crates via 3 Gbit/s fibers
 - Single 6-slot crate to receive 36 fibers: 5 RCE modules + 1 Cluster Interconnect Module (CIM)
- Total out of EM Barrel partition: 1.6 Gbytes/s
 - Available bandwidth: > 80 Gbit/s (and is scalable)
- Sorting, data reduction
- Can be switched into ATCA processors for data-filtering/reduction or online farm
 - A few 10-G Ethernet fibers off detector

(#)



(#)

Power Supply Timing (use EMCAL KPIX as example)


- Timing
 - Period = 200mS
 - AVDD is pulsed internal to KPiX for 1.0mS
 - DVDD = DC
- AVDD per KPiX
 - 200mA peak
 - 10 mW average
- DVDD
 - 2mA average
 - 10mW average

Power Converter Block Diagram (located on concentrator 1 board)

- Example:
 - Distribute 48V via concentrator 2 boards to concentrator 1 boards
 - On concentrator 1 board:
 - Input Power
 - 48 Volts
 - Output Power
 - 2.5 Volts @ 2.5Amps peak
 - 240mW average
 - High frequency buck
 - > 1.0MHz switching
 - 1.0uH- 10uH air core inductor
 - AVDD droop < 100mV</p>
 - 48 volt droop < 5 volts</p>
 - Efficiency > 70%
 - Can run higher input V (e.g. 400V) if needed

Power System

- Power for 96 KPiX is about 2 watts. At 70% efficiency the input power is 1.3*2=2.6 watts input.
- The capacitance on the input of the converters should smooth charging period over the 200mS.
- Set the input capacitor for a 5 volt drop during AVDD peak power. Letting the voltage to drop would minimize the capacitor size.
- The average current is to one concentrator 1 board is 2.6 watts/48 volts = 0.055 amps.
- Concentrator 2 boards could distribute power to concentrator 1 boards
 - 16 Concentrator 1 board for each concentrator 2 boards
 - 0.88A to each concentrator 2 board
- Wire resistance and power in cable for 20 meters (10m distance, x 2 for return)
 - AWG Ohms/20 meters voltage drop power loss in wire
 - 26 2.66 2.34 2W
 22 1.06 0.88 0.77W
 - Total of 36 cables into detector (for 36 concentrator-2 boards)
 - Total power in all 36 cables: ~30W with 22-AWG (less if larger or parallel wires)
 - Total power from supply: ~ 1.5kW (or about 30A at ~50V) (plus concentrator 1 and 2 power)
 - Plus add concentrator 1 and 2 power (~700W for EMCAL)

Power System (con't)

As an example, table below assumes KPIX-based front-end for most sub-systems

Sub-System	# of sensor s	#of pixels/s ensor	# of KPiX (or equivalent)	Power for front- end (70% eff)
TrackerBarrel	5,788	1,800	10,000	250W
Tracker Endcap	2,556	1,800	2 * 3,500	200W
EM Barrel	91,270	1,024	54,000	1500W
EM Endcap	23,110	1,024	2 * 18,000	520W
HAD Barrel	2,800	10,000	27,000	800W
HAD Endcap	500	10,000	2 * 10,000	500W
Muon Barrel	2,300	100	5,000 (64-CH KPiX)	100W
Muon Endcap	2,800	100	2 * 1,600	100W
Vertex			tbd	tbd
LumCal			tbd	tbd
BeamCal			tbd	tbd

- Add power for concentrator 1 and 2 boards (EMCAL is highest, ~700W)
 - Concentrator board mainly contains FPGA for sorting

Summary

- Event data rate for SiD can be handled by current technology, e.g. ATCA system being built for LCLS
 - SiD data rate dominated by noise & background hits
 - Can use standard ATCA crate technology with e.g. existing SLAC custom cluster elements and switch/network modules
- No filtering required in DAQ. Could move event data to online farm/off-line for further filtering/analysis
 - Still: investigate filtering in ATCA processors
- Power distribution at higher (48V to 400V) voltages to reduce wiring volume