PHYSICS OF NON-PROMPT TRACKS

Jonathan Feng UC Irvine

ALCPG 2007, Fermilab 25 October 2007

OUTLINE

 Standard Model Prompt tracks (t decays) Non-prompt tracks (b decays) Metastable particles (muons) 		Fine-tuned	Natural
 Beyond the Standard Model Generically prompt couplings ~ O(1) Δm ~ 100 GeV 	Coupling Suppressed	R _p Violating SUSY	Decays to Gravitinos
 But there are exceptions, some very well-motivated This talk: an overview of non-prompt (and metastable) examples in 4 categories 	Phase Space Suppressed	Slepton Decays	Wino Decays UED

COUPLING SUPPRESSED: FINE-TUNED

COUPLING SUPPRESSED: NATURAL

- SUSY → gravitinos
- Gravitino couplings are superweak, decays to gravitinos highly suppressed
- Appears naturally in gaugemediated SUSY breaking

PHASE SPACE SUPPRESSED: FINE-TUNED

- New particles may be accidentally highly degenerate
 - E.g., in SUSY, slepton and neutralinos
 - Fine-tuned: Non-prompt →
 ∆m < MeV, lepton is very soft

PHASE SPACE SUPPRESSED: NATURAL

 New particles in nearly degenerate multiplets

E.g., Winos

 Appears naturally in anomaly-mediated SUSY breaking

PHASE SPACE SUPPRESSED: NATURAL

Cheng, Matchev, Schmaltz (2002)

PHASE SPACE SUPPRESSED: NATURAL

SUMMARY

- Beyond the SM: many examples of non-prompt, metastable tracks
- Challenge: trigger, reconstruct, measure lifetimes, even given slow primary, soft secondaries, decay lengths varying from μm to m
- Representative examples:

