

Cavity Specification Table

23 Oct 2007 FNAL

Lutz Lilje DESY

ALCPG/GDE Meeting FNAL 23.10.2007 **Global Design Effort**

1

• This is a proposal for discussion

- Outer dimensions
 - Critical for cavity package and module groups
- RF Specification
 - When the cavity stays within its mechanical bounds possibly less critical for the interfaces to other systems
 - Likely exception: Iris diameter is beam dynamics issue

Outer Dimensions - Fixed and Changeable

- Straight forward (?):
 - Length: 1247 mm
 - Short TESLA-type (for comparison XFEL 1276mm)
 - Should rather define a slot slength
 - what matters for the module is the position of the cavities and the coupler ports
 - Maximum Outer Diameter:
 - Cells: 210 mm
 - HOM coupler: 232 mm
 - Max. Radius is 116 mm
 - Insufficient information for cavity systems
 - Position of magnet shielding is not fixed
- More difficult
 - Beam tube flange size and sealing system
 - Coupler port position and diameter
 - HOM port location, RF connector position
 - Connection to He Vessel

Beam tube and Flange Design

- Beamtube
 - 'Tesla short' diameter: 78 mm
 - go to industrial size?
- Flange system
 - 6 flanges total
 - see XFEL example
 - Several sealing systems available
 - Choice should take into account
 - Reliability
 - Potential re-assembly for re-test
 - Need WP to make a proposal
 - By When?
- Interconnecting bellow
 - after definition of flange system into module group's responsibility

ALCPG/GDE Meeting FNAL 23.10.2007

ALCPG/GDE Meeting FNAL 23.10.2007

Coupler Port Location

- Issues
 - Wake-potential needs further look
 - Port position
 - Depends on thickness of conical disk and shielding position
 - Port size
 - Do we need larger power capability?
 - Cabling
 - With tuner not at extreme position this is relaxed

Definition of weld position for tank

- Tank welding after performance test
 - Conical disks part of the bare cavity
 - Tank material need be welded to disk
 - do we have to do outside etch?
 - Magnetic shield position?

- 'Reference ring' is one of the more expensive parts in the fabrications
 - are there better options than this?
 - Cavity supports are attaching to reference ring

need number to be provided to cavity systems

Maximum allowed pressure

- 4 bar He vessel
 - cold, vacuum inside
 - agreed
- 2 bar (1.3 bar KEK number)
 - warm, vacuum inside ?
 - not clear !!!
- Action item:
 - compile list for different conditions

ILC Cavity RF Parameters - Overview

Parameter	Value
Type of accelerating structure	Standing Wave
Accelerating Mode	$TM_{010}, \pi mode$
Fundamental Frequency	1.300 GHz
Average installed gradient	$31.5 \mathrm{~MV/m}$
Qualification gradient	$35.0 \mathrm{~MV/m}$
Installed quality factor	$\geq 1 \times 10^{10}$
Quality factor during qualification	$\geq \! 0.8 { imes} 10^{10}$
Active length	1.038 m
Number of cells	9
Cell to cell coupling	1.87%
Iris diameter	$70 \mathrm{~mm}$
R/Q	$1036 \ \Omega$
Geometry factor	$270 \ \Omega$
$\rm E_{peak}/E_{acc}$	2.0
$\mathrm{B}_{\mathrm{peak}}/\mathrm{E}_{\mathrm{acc}}$	$4.26 \text{ mT MV}^{-1} \text{m}^{-1}$
Tuning range	$\pm 300 \text{ kHz}$
$\Delta f/\Delta L$	$315 \mathrm{~kHz/mm}$
Number of HOM couplers	2

ALCPG/GDE Meeting FNAL 23.10.2007 ILC Cavity RF Parameters – Fixed and Changeable

Parameter	Value
Type of accelerating structure	Standing Wave
Accelerating Mode	${ m TM}_{010},\pi{ m mode}$
Fundamental Frequency	1.300 GHz
Average installed gradient	$31.5 \mathrm{MV/m}$
Qualification gradient	35.0 MV/m
Installed quality factor	$\geq 1 \times 10^{10}$
Quality factor during qualification	$\geq \! 0.8 { imes} 10^{10}$
Active length	1.038 m
Number of cells	9
Cell to cell coupling	1.87%
Iris diameter	70 mm
R/Q	1036 Ω
Geometry factor	270 Ω
$\rm E_{peak}/E_{acc}$	2.0
$\rm B_{peak}/E_{acc}$	$4.26 \text{ mT MV}^{-1} \text{m}^{-1}$
Tuning range	±300 kHz
$\Delta f/\Delta L$	315 kHz/mm
Number of HOM couplers	2

ALCPG/GDE Meeting FNAL 23.10.2007

ir iic

TESLA General RF Parameters

Type of accelerating structure	Standing wave
Accelerating mode	TM_{010} , π mode
Fundamental frequency	1300 MHz
Design gradient $E_{\rm acc}$	25 MV/m
Quality factor Q_0	$>5 \times 10^{9}$
Active length L	1.038 m
Number of cells	9
Cell-to-cell coupling	1.87%
Iris diameter	70 mm
Geometry factor	270 Ω
R/Q	518 Ω
$E_{\rm peak}/E_{\rm acc}$	2.0
$B_{\rm peak}/E_{\rm acc}$	$4.26 \text{ mT MV}^{-1} \text{m}^{-1}$
Tuning range	±300 kHz
$\Delta f/\Delta L$	315 kHz/mm
Lorentz force detuning at 25 MV/m	≈600 Hz
Q_{ext} of input coupler	3×10^{6}
Cavity bandwidth at $Q_{\rm ext} = 3 \times 10^6$	430 Hz
rf pulse duration	1330 µs
Repetition rate	5 Hz
Fill time	530 µs
Beam acceleration time	800 µs
rf power peak/average	208 kW/1.4 kW

ALCPG/GDE Meeting FNAL 23.10.2007

Number of HOM couplers 2 Cavity longitudinal loss factor k_{\parallel} for $\sigma_z = 0.7 \text{ mm}$ 10.2 V/pC Cavity transversal loss factor k_{\perp} $15.1 \text{ V pC}^{-1} \text{m}^{-1}$ for $\sigma_z = 0.7 \text{ mm}$ Parasitic modes with the highest impedance: type TM_{011} $\pi/9 (R/Q)$ /frequency $80 \Omega/2454 \text{ MHz}$ $2\pi/9 (R/Q)$ /frequency 67 Ω/2443 MHz Bellows longitudinal loss factor k_{\parallel} for $\sigma_z = 0.7 \text{ mm}$ 1.54 V/pC Bellows transversal loss factor k_{\perp} $1.97 \text{ V pC}^{-1} \text{m}^{-1}$ for $\sigma_z = 0.7 \text{ mm}$

ALCPG/GDE Meeting FNAL 23.10.2007

ACD/Plugin Proposal

GDE Meeting FNAL 23.10.2007 Lutz Lilje

ALCPG/GDE Meeting FNAL 23.10.2007 **Global Design Effort**

17

ACD Boundary Conditions and Testing

- Boundary condition
 - Mechanical part has been discussed before
 - RF design needs some feedback mechanism with Beam dynamics
 - would be best before cavities are built
- Testing of alternate Cavities requires (according to Rich's list)
 - Cavity shape:
 - 24-30 cavities in 3 modules with beam including
 - Low-power performance test
 - High-power test (individual or full module)
 - HOM testing with beam

- Cavity material:

- Cost-benefit analysis
- 30 cavities in bench tests (low-power and high-power),
 - Performance test
 - Getting experience with pulsed operation
 - no module or beam test needed

Cavity 'Design For Manufacturing' (similar to XFEL)

- Minor design changes for easier welding, simpler machining etc.
- Few cavities in bench tests, if at all
- For other changes
 - Needs discussion