

• SiD • Talk Outline (First Draft)

Figuring out what to include in this talk has been a challenge

- Gee-whiz design and technology for tracking?
 - NO! Extensively covered in Wednesday ALCPG plenary session
- Seductive new physics we can do with the tracker?
 - NO! Extensively covered by talks that follow
- Srilliant algorithms for tracking software?
 - NO! Extensively covered by other talks at this workshop
- Fashionable new bureaucracy prescribed by DOE Order 413.3?
 - NO! There may be some impressionable young minds in the audience
- Anything left?
 - Hope so...it's too early for the coffee break

• SiD • Talk Outline (Second Draft)

Will try to answer some simple questions:

- What is required to efficiently find tracks?
- How do the vertex detector and outer tracker work together to deliver good tracking resolution?

Or...can we see what goes into a well-designed tracker without writing complex tracking code?

• SiD • Track Finding Performance

What determines track finding performance?

Number of "voxels"?

- Voxel is essentially a 3D pixel in the tracking volume
- The number of voxels is a measure of how many distinguishable space points exist in the tracking volume
- For a TPC, you may have 10⁹ or more voxels in the tracker
- Not clear that voxel counting is useful in a silicon tracker
 - # voxels = # strips? (~30M voxels)
 - What about stereo layers? # voxels = # strips ** 2? (~ 10^{10} voxels)
 - Distribution of voxels in tracking volume is important

Number of layers?

- Required redundancy depends on many factors
 - Occupancy
 - Hit resolution
 - Physics goals (kinks, long lived secondaries)
- More layers is not necessarily better (more material, power, cost, etc.)

Need to look deeper...

Richard Partridge

Fermilab ALCPG Meeting

• SiD • Finding Tracks

- It is easy to be efficient in finding tracks
 - Need 3 space points to form a helix, so any track with 3 hits can be found...
 - ...but there will also be many fake tracks from random associations of 3 hits
- The challenge is maintaining efficiency while rejecting fakes
 - Typically reject fakes by requiring hits in additional tracker layers
- Good resolution reduces the search window
 - For equally spaced tracking layers, three hits with r- ϕ resolution σ yield an uncertainty 5σ in the predicted position for the fourth layer (circle fit)
 - For silicon strips with 7 μm resolution in r-φ, a ±3 sigma window for the predicted position of a fourth hit is ±105 μm (~4 strips)
 - A TPC with 100 μ m resolution has a wider search window in r- ϕ (±1500 μ m), but can also require a consistent position in z (±18 mm for 4 mm z resolution)
 - Low momentum tracks need larger search windows in the outer tracker (due to multiple scattering errors), but the effect is small in the vertex detector
- Low occupancy in the search window reduces the probability of a random hit confirming the track hypothesis

Richard Partridge

• SD • Hit Density in SiD Tracker

- Look in the core of $E_{CM} = 500 \text{ GeV}$ qqbar events to estimate peak hit density for physics events
 - Select "2-jet" topology (thrust > 0.94) events in central region ($|\cos(\theta_T)| < 0.5$)
 - Empirically: peak hit density (hits per mm²) is $\sim 200 / r^2$ (r in mm)

• SD • What About Machine Backgrounds?

- Takashi Maruyama has calculated the expected machine backgrounds for the nominal ILC parameter set
 - Pair background: 138 e⁺e⁻ per bunch crossing in detector (390K per train)
 - $\gamma\gamma \rightarrow$ hadrons: 0.65 events per bunch crossing (1841 per train)
 - $\gamma\gamma \rightarrow$ muons: 1.3 events per bunch crossing (3779 per train)

SD · Maximum Hit Density (hits/cm²/train)

	Pairs	γγ -> Had	$\gamma\gamma \rightarrow \mu\mu$	Total
Barrel Charged	0.15	0.2	0.13	0.48
Barrel Photons	2.0	<<0.01	<<0.01	2.0
Endcap Charged	0.4	0.3	0.25	1.0
Endcap Photons	1.5	0.02	<< 0.01	1.5
Forward Charged	575.	8.	15.	598.
Forward Photons	35.	0.9	<< 0.01	36.

Machine backgrounds small for detectors with good timing

Major challenge for the inner layer of vertex detector

Richard Partridge

Fermilab ALCPG Meeting

• SD • Occupancy in Jet Core

- Pixel area is ~ $6x10^{-4}$ mm² (assume 25 µm x 25 µm pixels)
- Strip area is ~5 mm² (assume 50 μ m x 100 mm strips)
- For TPC with 10^9 voxels, voxel cross section is ~ 10 mm^2

• SiD• Impact of Occupancy on Tracking

- For both TPC and silicon tracking, occupancies appear to be ~1% or less even in the core of a hard jet
 - Generally, a good sign for tracking
 - The combination of good track extrapolation and low occupancy should allow good suppression of fake tracks by requiring a relatively small number of confirming hits
 - This appears to be born out by the success of preliminary simulation studies
- In the outer layers of the SiD barrel tracker, there is on average only 1 hit per sensor in the jet core
 - If stereo strips are added, there should be little problem with ghosting

• SiD • Tracker Resolution

- Expected tracker resolution can be estimated without doing a full detector simulation
- In the small angle approximation, the particle trajectory is linear in the track parameters

 $r\phi \approx b + r\phi_0 + 1/2\,kr^2$

- The fitted error matrix in a least squares fit is independent of the actual measurements, and only depends on the radii and (correlated) measurement errors
- Resolution can be conveniently calculated in a spreadsheet
 - Ron Lipton and I have developed such a spreadsheet:
 - http://www.hep.brown.edu/users/partridge/nlc/sd_tracker_resolution.xls
- Expected error is really a 3x3 correlated error matrix in 1/p_T,
 \$\overline\$, and impact parameter b
 - Plot 1 sigma contours to show impact of correlations

 ϕ vs 1/p_T 1 σ Error Contour - p = 10 GeV

b vs $1/p_T 1 \sigma$ Error Contour - p = 10 GeV

b vs $1/p_T 1 \sigma$ Error Contour - p = 1 GeV

• $\widehat{S_iD}$ • Error ellipse results

- Strip tracker has excellent \$\phi\$ and \$1/p_T\$ resolution, with little improvement from combining pixel and strip detectors
- Both pixel and strip detectors have pretty good impact parameter resolution for 10 GeV tracks
- Precise momentum determination from strip tracker required to get full resolution out of pixel tracker for 10 GeV tracks
- For 1 GeV tracks, strip tracker impact parameter resolution degrades substantially due to multiple scattering, and only
- Only modest gain in impact parameter resolution from adding strip tracker hits for 1 GeV tracks
- Pixel detector alone has reasonably good p_T resolution at low momentum despite the small lever arm (~1.5% at 1 GeV)

• SiD • Tracking Observations I

- Both TPC and silicon trackers are likely to be efficient at finding prompt tracks
- Silicon and TPC algorithms under study take somewhat different approaches to track finding
 - The large number of redundant measurements in a TPC allows tracing out a particle's trajectory
 - The silicon tracker relies on precision measurements to find helicies
 - A TPC tracker will probably be better at finding tracks from K_S / Λ decays and following kinks due to in-flight decays and/or interactions
- The ILC trackers should allow high momentum tracks to be measured with unprecedented precision
 - The expected presence of narrow heavy states (Higgs + others?) lends strong motivation for precision tracking at high momentum
 - Likely that silicon trackers will have an advantage in this regard
 - Less clear that much is to be gained by <1% precision at low momentum</p>

• SiD • Tracking Observations II

- Both TPC and silicon trackers make ionization measurements allowing some level of particle ID
 - Not clear that this will be useful in the traditional usage of aiding the reconstruction of exclusive final states
 - Possible presence of long-lived heavy particles may provide a new application for ionization / particle ID
 - Heavy particles typically have modest betas and should have a clear ionization signature