Americas Regional Program

ALCPG Meeting Fermilab, October 22nd 2007

Tor Raubenheimer

Americas Regional Team

- The Americas Regional Team (ART) is led by Mike Harrison with support from Jerry Blazey at DOE
- Focused on ILC R&D and development of the EDR
- Includes most national laboratories:
 - FNAL, SLAC, ANL, BNL, Jlab, LBNL, LLNL, LANL, Cornell, ...
 - And a number of Universities
- Strong effort which has grown rapidly over last few years

		<u> </u>			
	Estimated	Actual	Appropriated	Planned	Requested
	FY05	FY06	FY07	FY08	FY09
TOTAL ILC line	\$21,923	\$29,700	\$41,700	\$60,000	\$75,000
SRF Infrastructure					
and Industrialization	\$8,725	\$12,000	\$19,000	\$23,400	\$35,000
Overall total: ILC+SRF	\$30,648	\$41,700	\$60,700	\$83,400	\$110,000

Approximate US ILC Accelerator Budgets FY05-FY09

ART Budget and Foci

- FY08 program was developed with strong focus on SCRF
 - Roughly 2/3 is focused on the main linac SCRF and RF power
 - Large infrastructure development to support SCRF
 - Significant efforts on CFS and BDS with smaller efforts on DR, Sources, and ML Beam Dynamics

FY08 budget planning by lab

FY08 budget planning by topic

ART Level-2 Managers

• The ART program is constructed with the help of the Level-2 managers who develop the specific programs

Global Systems Electron Source Positron Source Damping Rings RTML and ML BD

Main linac RF Main linac Cav. and CM

BDS CFS Regional Interest

- J. Carwardine and R. Larsen
- A. Brachmann and M. Poelker
- J. Sheppard and J. Gronberg
- A. Jackson and M. Palmer
- P. Tenenbaum and N. Solyak
- C. Adolphsen and S. Nagaitsev
- S. Mishra, H. Padamse, J. Mammoser, and M. Kelly
- A. Seryi and B. Parker
- V. Kuckler and F. Asiri
- B. Kephart and E. Paterson

Polarized Electron Sources

- Constructed laser room for ILC laser and purchased most laser components
- Working on robust photocathodes for high polarization
 - Need laser system to verify charge and current limits with long pulses
- Start polarized gun design in FY08
 - Understand high voltage and vacuum performance

High polarization strain GaAs photocathodes

ILC Laser Development Lab

Investments FY05-07:

250 k\$ HVAC system 175 k\$ 40 W pump laser 120 k\$ regenerative amplifier (cryocooled, 3 MHz)

Current activities:

- Laser work
- Gun operation
- Photocathode development

Positron Source: FY07 SI

SLAC

- Led the RDR effort
 - Systems design, optics, target, capture, transport
- Analysis of capture efficiency in magnetic optics
 - Minimize undulator cost by maximizing capture of produced positrons
 - Evaluation of options for OMD
 - Analysis of OMD / target interactions
- Target prototype effort with Daresbury
 - Eddy current calculations; stress-strain calculations; rotor-dynamic analysis
- Beam loss and collimation simulation
- NC capture structure design and demonstration

Positron Source: FY08 Narrowing scope in US

- UK will take over management of e+ design
 - Narrowing scope of US EDR effort
- Many outstanding issues still exist
 - Target prototype design
 - Capture optics and flux concentrator
 - Remote handling design and issues

10/22/2007

Americas Regional Program

Damping Rings

- Contributing Institutions: Alfred U., ANL, U. of British Columbia, Cornell U., FNAL, U. of Illinois, LBNL, LLNL, SLAC
- Major Efforts
 - Accelerator Design
 - Baseline Lattice design and evaluation
 - Impedance and Instabilities
 - R&D
 - Electron Cloud experiments
 - Fast High Voltage Pulser and Kickers
 - Component and System Engineering
 - Vacuum and Magnet Systems design
 - Systems Integration
 - Test Facilities

8.8KU -2.8KU -4.8KU -4.8KU -4.8KU -4.0KU -4.0KU

A. Krasnykh (SLAC, in collab. w/loffe PTI, St. Petersburg)

- KEK-ATF instrumentation support and experiments at CESR-TA
- Key R&D Results
 - Promising results on electron cloud mitigation with coatings and grooved surfaces
 - Demonstration of DSRD pulser meeting timing requirements for 3 ns bunch spacing

Electron Cloud Studies

- Experiments at PEP-II in FY07 and FY08 will clarify the utility of TiN coatings and longitudinal grooves
- Subsequent experiments at KEK and CESR-TA will study clearing electrodes as well as above techniques with parameters closer to ILC damping rings

10/22/2007

CESR-TA: Damping Ring Test Facility

Goal:

Provide a vehicle for ILC Damping Rings R&D on the timescale of the EDR. The primary focus is to study the impact of the electron cloud on ultra low emittance beams and mitigation methods in a wiggler-dominated storage ring.

•

Baseline Lattice

Parameter	Value	
No. of Wigglers	12	
Wiggler Field	2.1 T	
Beam Energy	2.0 GeV*	
∆E/E	8.6 x 10 ⁻⁴	
\mathbf{E}_{v} (geo) target	~5 – 10 pm	
$\boldsymbol{\epsilon}_{h}$ (geo)	2.3 nm	
Damping Time	47 ms	
Bunch Spacing	4 ns	
Bunch Length	9 mm	

*CESR operating range is 1.5-5.5 GeV

- EC Growth and Mitigation Studies
 - Probe bunch configurations similar to ILC DR
 - Conduct unique studies in high field damping wigglers
- Ultra Low Emittance Operation & Beam Dynamics Studies
 - Validate correction algorithms
 - Measure and maintain ultra low emittance beams
 - Characterize sources of emittance growth in ultra low emittance beams
 - Probe species dependent effects
- Deliver design inputs to the ILC EDR

Main Linac High Level RF

- Development and evaluation of modulators, klystrons, rf distribution, and couplers
 - Baseline design is being developed for XFEL at DESY
 - Use much of what is done for XFEL although some requirements differ somewhat
 - Alternate paths for significant cost reduction and performance improvements being investigated in US
 - Marx modulator
 - Sheet beam klystron
 - Alternate RF distribution
 - Incremental improvements

International Linear Collider – Americas Bouncer (Baseline) Modulator

Capacitor Banks

Bouncer Choke

Marx Generator Modulator

100kV; 150A; 5Hz; 100kW.

Prototype is operating well at 5Hz and ~100 kW

DETAIL, MARX MODULATOR CORE

- Baseline is 10 MW multi-beam klystron
 - Toshiba, Thales, CPI manufacturing horizontal tubes for XFEL
 - US will be testing vertical Toshiba klystron
 - Concerns about industrializing tubes in US
- Sheet Beam Klystrons
 - Allows higher beam current (at a given beam voltage) while still maintaining low current density for efficiency

- Will be smaller and lighter than other options
- PPM focusing eliminates power required for solenoid

RF Distribution

- Developing improved rf distribution designs to optimize distribution with cavity gradient variation and reduce cost
 - To be tested in ILCTA (Fermilab)

Case	Sorted [%]
Individual P's and Q's	0.0
(VTO and Circ)	
P's in pairs, Q's in pairs	0.8+/-0.2
(VTO but no Circ)	
1 P, Q's in pairs	3.3+/-0.5
(no VTO, no Circ)	
Gi set to lowest Glim	19.8+/-2.0
(no VTO, no Circ)	

Variable Tap-offs (VTOs)

3 dB Hybrids

US Cavity Program

- Number of cavity goal: Fabricate 1/3 of the Cavity needed for the Global S0/S1 program, with focus on getting US Industry involved and qualified
 - FY05
 - 4 Cavities from ACCEL (Type-III+ length)
 - FY06
 - 4 Cavities from AES (Type-III+ length)
 - 4 Jlab (2 Fine, 2 Large)
 - 9 Cavities from ACCEL (To be delivered by 12/31/07)
 - 6 Cavities from AES (To be delivered by 12/31/07)
 - FY07
 - 12 Cavities (ACCEL) (Mid CY08)
 - 12 1-cell Cavities (AES & ACCEL) (AES 9/18/07, ACCEL 12/31)
 - FY08-09
 - 24 & 60 Cavities (Planned)

All of these cavities are fine grain Nb and ILC design

EP and Vertical Test at Jlab

- FNAL collaborates closely with Jlab on cavity processing
- Jlab modified existing infrastructure for Electropolish, High Pressure Rinse, and Vertical Test of ILC cavities
 - Capable of > 40 process and test cycles/yr
 - Completed 32 in FY07

EP & Vertical Test at Cornell

Vertical EP Infrastructure

- New vertical EP R&D infrastructure
- HPR & Vertical Test of ILC cavities
- 3 ACCEL cavities processed # 5, 8, 9
- 8 process and test cycles in FY07
- Gradients achieved 24-30 MV/M
- Limited by quench

ACCEL cavity EP Processed & tested at Cornell

ART: Cavity Process & VTS Results

Most cavities, esp U.S. cavities are limited by Quench vs FE

Processing Facility at ANL

Chemistry, Clean rooms, BCP, HPR & EP @ANL: ~ 50 cy/yr

New Vertical Test at FNAL

- Recently commissioned (IB1)
 - Existing 125W@ 1.8 K Cryogenic plant
 - RF system in collaboration with Jlab
 - Capable of testing ~50 Cavities/yr
 - Evolutionary upgrades:
 - Thermometry for 9-cells, 2 cavities at a time, 2 top plates, Cryo upgrades
 - Plan for two additional VTS cryostats
 - Ultimate capacity ~ 264 cavity tests/yr

VTS Cryostat:IB1

Horizontal Test System at FNAL

- Dressed cavities are tested with pulsed RF power
 - 300 KW klystron & modulator complete and tested
- Extensive MDB cryo modifications → 100 W @ 1.8 K
 - HTS currently cold & being commissioned with 1st cavity
- Serves as test bed for LLRF, tuner & coupler studies
- Unique capability in Americas: Goal 24 cavity tests/yr

Cryomodule Assembly Facility

- Goal: Assemble R&D Cryomodules
- Where: MP9 and ICB buildings
 - MP9: 2500 ft² clean room, Class 10/100
 - Cavity dressing and string assembly
 - ICB: final cryomodule assembly
- Infrastructure:
 - Clean Rooms, Assembly Fixtures
 - Clean Vacuum, gas, water & Leak Check
- DESY Cryomodule "kit" being assembled now

ICB clean: Final Assembly fixtures installed

Type-4 Cryomodule

US Cryomodule Plan

- 1st Cryomodule (2007)
 - Assemble a TESLA TTF type III CM from DESY "kit"
 - Cavities built and fully tested by DESY
- 2nd Cryomodule (2008)
 - Also TTF type III cryomodule
 - Cavities are processed and tested in the US
 - Electropolished and tested at JLAB, Cornell, and ANL/FNAL
 - Cryostat and cold mass from Zannon in Europe
- 3rd Cryomodule (2009)
 - 1st type IV ILC cryomodule built anywhere
 - Parts built in U.S. industry
- 4th-6th Cryomodules (2010-11)
 - Build ILC RF unit in U.S.
 - Transfer knowledge gained to Industry
- Develop, build & test basic building blocks of the Main Linac to evaluate main linac cost and reliability issues

ILCTA at FNAL Layout

Beam Delivery System

- Design
 - Integrate worldwide BDS design efforts, develop EDR plans
 - Accelerator & detector physics design
 - Address GDE goals on design optimization & cost reduction
 - Develop revised IR designs compatible with push-pull
- R&D & Test Facilities (ATF2 and ESA)
 - Prototypes and performance enabling hardware
 - Long IR magnet prototype, study vibration issues in SC FD
 - Study nanometer BPM system at ATF
 - ESA experiments on energy spectrometers, collimator wakefields, bunch length diagnostics and IP feedback
 - ATF2 design and construction

Interaction Region Integration

Push-Pull Layout

Result of IRENG07 workshop: a more detailed scheme of IR & push-pull scheme. Credits to many participants of IRENG07, conveners of WG-A, WG-B, and WG-C, the CF&S team and in particular CERN's Alain Herve and John Osborne

coil inte

quench heate

ated

Preparation for FD prototype: winding machine modifications to accommodate longer coils, integrated coil heater to test quench threshold, engineering integrated design

ATF-2 Final Focus Test

- Rapid progress being made on infrastructure at KEK
- US is contributing a large number of components and expertise:
 - Magnets: dipoles, final quadrupoles, and sextupoles
 - Beam line tuning software packages
 - High availability power supplies
 - ATF damping ring BPMs
 - Fast kicker pulsers
 - RF bpm electronics
 - Magnet movers
 - Optics design
 - Operational support

International Linear **BDS beam tests at ESA** Collider – Americas BPM energy spectrometer (T-474/491) Synch Stripe energy spectrometer (T-475) Collimator design, wakefields (T-480) IP BPMs/kickers—background studies (T-488) EMI (electro-magnetic interference) March 7-26, 2007 Bunch length diagnostics (T-487) ~ 40 participants Wakefield box Wire Scanners **FONT-T488** rf BPMs Wakefield Wire scanner Wigg er 2 uture BPM tes Runs: three 2-week SPEAR girder 1 SPEAR girder 2 🎽 runs in 2006 & 07; - × L A A 🔍 slide plates & iacks 🛛 🗸 request two runs in 18 feet 2008 T-487: long. bunch profile Ceramic gap BLMs

Upstream (not shown)

4 rf BPMs for incoming trajectory Ceramic gap w/ rf diode detectors (16GHz, 23GHz, and 100GHz) and 2 EMI antennas Downstream (not shown) Ceramic gap for EMI studies T475 Detector for Wiggler SR stripe

Dipoles + Wiggler

Energy Spectrometer at ESA

International Linear Collider – Americas

- BPM & SR based
- Interferometer metrology grid for BPMs
- NMR probes in magnets
- 0.5um BPMs with η=5mm => 1e-4 energy resolution
- Study calibrations, systematics, stability
- SR version with quartz fiber detector will be used next run

TRIUMF SCRF Infrastructure

International Linear Collider – Americas

TRIUMF 5-Year Plan

- TRIUMF now preparing 5-year plan for Canadian Government for 2010-2015
- Funds allocated in 5-year units
- ILC being discussed on how it might be included in plan
- TRIUMF has signed an umbrella MOU with Fermilab for ILC (draft MOU -- DESY detector)
- Addendum being prepared
 - Make three single-cell cavities 1.3 GHz using multi-grain niobium (electro-polish elsewhere)
 - Move towards single crystal large grain version which only needs BCP
- Produce a 9-cell cavity and qualify PAVAC as an ILC vendor for North America
- University researchers getting involved in SRF

- Very strong program across the US covering a broad spectrum of ILC topics
 - Led the RDR effort and coordinated many of the Area and Technical Systems
 - Strong R&D programs
 - Narrowing focus of design efforts during EDR phase as international partners assume larger role
 - Will need to re-align programs when actual EDR effort becomes clear
- Rapid buildup of SCRF infrastructure for ILC as well as other future projects using SCRF (ERL's, XFEL's, RIA, ProjectX, …)
 - Industrialization process for SCRF components is beginning