$h \rightarrow \gamma \gamma$: mini-review

Frank Petriello

ALCPG 2007

Outline

- Physics motivation for $h \rightarrow \gamma \gamma$ measurement
- Theoretical uncertainty in $BR(\gamma\gamma)$ calculation
- How well can the LHC measure $BR(\gamma\gamma)$?
- How well can the ILC measure $BR(\gamma\gamma)$?
- ILC experimental issues
- Effect of EM calorimeter energy resolution

- Produced via W, t loops \Rightarrow these interfere destructively
- At $m_h = 120$ GeV, $BR(\gamma\gamma) \approx 2 \times 10^{-3}$

New physics effects

Because it is loop-induced, especially sensitive to new physics

• Shifts of $10\% \rightarrow$ factors of a few possible

Theoretical uncertainties

- Can be computed with high precision
- $\Delta_{th}[\sigma \times BR(\gamma\gamma)] = 1 2\%$
- 0.1% from missing higher order calculations, remainder from parametric uncertainties in \bar{m}_b, \bar{m}_c (Droll and Logan, hep-ph/0612317)
- Production modes:
 - ILC $e^+e^- \rightarrow v\bar{v}h$ uncertainty: 0.5% (from Droll and Logan)
 - LHC $gg \rightarrow h$: 5%* at (almost) N^3LO (Vogt et al., hep-ph/0608307)
 - LHC WBF: 4% (from Dührssen et al., hep-ph/0406323)

Measurement at the LHC

• 20% precision for $m_h = 120$ GeV at high luminosity

• Caveat! Uses 20% uncertainty for $gg \rightarrow h$, needs updating

Measurement at the ILC

• Studies done with 1 ab^{-1} at $\sqrt{s} = 350, 500, 1000 \text{ GeV}$

Boos et al., hep-ph/0011366; Barklow, hep-ph/0312268

• For $m_h = 120 \text{ GeV}$:

 $\sqrt{s} = 350 \,\text{GeV} \implies \Delta BR(\gamma\gamma) = 12.1\%$ $\sqrt{s} = 500 \,\text{GeV} \implies \Delta BR(\gamma\gamma) = 9.6\%$ $\sqrt{s} = 1000 \,\text{GeV} \implies \Delta BR(\gamma\gamma) = 5.4\%$

• First two use $e_{pol}^+ = 60\%$, last $e_{pol}^+ = 50\%$; both use $e_{pol}^- = 80\%$ \Rightarrow ILC can do quite well at all stages!

Experimental issues

Beam polarization is an important issue; without it:

 $\sqrt{s} = 350 \,\text{GeV}: \quad \Delta BR(\gamma\gamma) = 12.1\% \Rightarrow 17.9\%$

 $\sqrt{s} = 500 \,\text{GeV}: \quad \Delta BR(\gamma \gamma) = 9.6\% \Rightarrow 16.4\%$

- Energy resolution of EM calorimeter?
- $BR(\gamma\gamma)$ an ILC calorimeter benchmark (Battaglia et al., hep-ex/060301)

Analysis of resolution effect

- Use analysis of Boos et al., hep-ph/0011366 and $m_h = 120 \text{ GeV}$
- Relevant final states: $q\bar{q}\gamma\gamma$ at $\sqrt{s} = 350$ GeV, $\nu\bar{\nu}\gamma\gamma$ at $\sqrt{s} = 350$, 500 GeV
- Parametrize background after selection cuts as linear for $110 < m_{\gamma\gamma} < 130 \, \text{GeV}$
- Calorimeter resolution:

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E(\text{GeV})}}$$

- Vary *a* between [10%, 20%]; consistent with range in DCR
- Treat Higgs signal as Gaussian with experimental width dependent on a
- For each a minimize $\sqrt{S+B}/S$ w.r.t. size of $m_{\gamma\gamma}$ window

Results and conclusion

- **9** a = 0.10 results less than 1% higher than Boos et al. \Rightarrow consistent
- Optimum $m_{\gamma\gamma}$ window $\approx 1.2 \times \Gamma_{exp} \Rightarrow$ same as Boos et al.
- Precision degrades by 2 4% taking *a* from $0.10 \rightarrow 0.20$
- \Rightarrow less important than polarization