Studies with PandoraPFA

Marcel Stanitzki Ray F. Cowan

Physics Signatures II ALCPG 2007 October 23, 2007

Studies with PandoraPFA

Consider both LDC and SiD-like detectors

Use LDC00Sc parameters

B-field 4T, tracker radius 1.7 m, detector length 2.7 m SiW 40 layer ECAL 10x10 mm pads HCAL 40 layer analog scintillator, 3x3 cm pads

Scale to SiD-like parameters

Vary B-field (4, 5, 6 T) Reduce tracker radius (1.27 m) ECAL layers ($40 \rightarrow 30$)

Impact of tracking technology (TPC vs. silicon)

Minimal effect due to use of track cheating

Longer-term

Implement full SiD-like design

Main bottleneck

Need description of SiD-like detector with HCAL digital readout for gear/marlin

HCAL: 1x1 cm RPC digital

Overview of PandoraPFA

- Performs ECAL & HCAL reconstruction and particle-flow analysis
 - Preparation: classify hits by
 - Depth into calorimeter
 - Isolation from other hits
 - Is it MIP-like?
 - Cluster non-isolated hits using cone algorithm
 - Use tracking information to seed new clusters
 - Associate hits with clusters
 - Unused hits form new clusters
 - Associate clusters
 - Based on topology
 - Allow for photons, merged tracks, backscatters, MIP segments
 - Perform iterative reclustering as needed, using track momentum

Studies with PandoraPFA Marcel Stanitzki, Ray F. Cowan Session: Physics Signatures II ALCPG 2007

2

3

0 1

Mark Thomson

4 5 6

October 23, 2007 3

Iterative reclustering

Studies with PandoraPFA Marcel Stanitzki, Ray F. Cowan Session: Physics Signatures II ALCPG 2007

PandoraPFA and LDC00Sc

Recent studies using LDC00Sc detector and PandoraPFA

Use rms90

RMS of smallest region containing 90% of the events

Shows acceptable jet energy resolution up to E_{jet} < 100 GeV

Continuing development by Mark Thomson

Expects adequate performance will be achieved at higher energies

Biggest problem will be confusion at higher energies

E _{JET}	σ _E /E = α√(E/GeV) cosθ <0.7
45 GeV	0.295
100 GeV	0.305
180 GeV	0.418
250 GeV	0.534

Mark Thomson August 2007

rms90

Initial results

Errors ± 0.2–0.3

Configuration	n/sqrt(E)	Jet energy
LDC00Sc	30.5	45
LDC00Sc 5T	31.2	45
LDC00Sc 30 layer ECAL	32.4	45
LDC00Sc Sid-ish 4T	32.6	45
LDC00Sc Sid-ish 5T	32.0	45
LDC00Sc Sid-ish 6T	33.8	45
LDC00Sc	36.7	100
LDC00Sc Sid-ish 4T	42.7	100
LDC00Sc Sid-ish 5T	41.0	100
LDC00Sc Sid-ish 6T	39.8	100

M. Stanitzki

100 GeV numbers are very preliminary

Items to be studied

Questions to address

Can we reproduce Mark's numbers? Yes, at least at lower energies Jet energy resolution as function of Radius **B-field ECAL** layers **HCAL** layers, depth ILD development: studying 4.5–5 λ_1 ? Analog scintillator vs. digital RPC **Detector length** Comparison of LHep and LCPhys physics lists Recently discovered not all datasets we're using use LCPhys (it's not the Mokka default) Dependence of PFA on hadronic cascade code Need some indication of sensitivity of PFA to cascade shower models Effect of different models handling of statistical fluctuations may be important Conversion to real tracking from cheated tracks Implementation of full SiD concept in marlin

Need full detector description for use with Mokka Requires new code for digital readout simulation