

- Modular Particle Flow for the ILC
- Purity/Efficiency-based PFA
- / PFA Module Reconstruction
 - Jet Reconstruction

Stephen Magill Argonne National Laboratory

e+e--> ttbar -> 6 jets @500 GeV CM

Parton Measurement via Jet Reconstruction

Calorimeter jet

- Interaction of hadrons with calorimeter.
- Collection of calorimeter cell energies.

Particle jet

- After hadronization and fragmentation.
- Effect of hadronization is soft ⇒ allows comparison between particle and parton jets.

Parton jet

- Hard scattering.
- Additional showers.

From J. Kvita at CALOR06

PFA Template - Modular Approach

Flexible structure for PFA development based on "Hit Collections" (ANL, SLAC, Iowa)

Simulated EMCAL, HCAL Hits (SLAC)

DigiSim (NIU) X-talk, Noise, Thresholds, Timing, etc.

EMCAL, HCAL Hit Collections

Track-Mip Match Algorithm (ANL)

Modified EMCAL, HCAL Hit Collections

MST Cluster Algorithm (lowa)

H-Matrix algorithm (SLAC, Kansas) -> Photons

Modified EMCAL, HCAL Hit Collections

Nearest-Neighbor Cluster Algorithm (SLAC, NIU)

Track-Shower Match Algorithm (ANL) -> Tracks

Modified EMCAL, HCAL Hit Collections

Nearest-Neighbor Cluster Algorithm (SLAC, NIU)

Neutral ID Algorithm (SLAC, ANL) -> Neutral hadrons

Modified EMCAL, HCAL Hit Collections

Post Hit/Cluster ID (leftover hits?)

Tracks, Photons, Neutrals to jet algorithm

A Systematic PFA Development

Starting Point:

100% pure calorimeter cell population — 1 and only 1 particle contributes to a cell

More practically, no overlap between charged particles and neutrals

- -> Defines cell volume $v(d_{IP}, \eta, B?)$
- -> Start of detector design optimization
- -> Perfect PFA is really perfect no confusion to start

100% pure tracker hits (or obvious crossings)

- -> Defines Si strip size
- -> Start of design optimization
- -> Perfect Tracks are really perfect

PFA is an intelligent mixture of high purity and high efficiency objects – not necessarily both together

Occupancy Event Display

Standard Perfect PFA (Perfect Reconstructed Particles)

Takes generated and simulated MC objects, applies rules to define what a particular detector should be able to detect, forms a list of the perfect reconstructed particles, perfect tracks, and perfect calorimeter clusters.

Complicated examples:

- -> charged particle interactions/decays before cal
- -> photon conversions
- -> backscattered particles

Critical for comparisons when perfect (cheated) tracks are used Extremely useful for debugging PFA

Standard Detector Calibration

Default detector calibration done with single particles Basic Clusters contain calibrated energies – analog in ECAL and digital in HCAL

Standard for all SiD variants with analog ECAL, digital HCAL Checked with Perfect PFA particles

Perfect PFA - SiD01 e+e--> qq @ 200 GeV

Detector Calibration Check

Photons from Perfect PFA (ZPole events in ACME0605 W/Scin HCAL)

Track/CAL Shower Matching

This is an example of where high purity is preferred over efficiency

- -> will discard calorimeter hits and use track for particle
- -> better to discard too few hits rather than those from other particles
- -> use hits or high purity cluster algorithm

Example:

- 1) Associate mip hits to extrapolated tracks up to interaction point where particle starts to shower.
 - -> ~100% pure association since no clustering yet
 - -> tune on muons to get extra hits from delta rays
- 2) Cluster remaining hits using high purity cluster algorithm Nearest Neighbor with some fine tuning for neighborhood size
 - -> iterate, adding clusters until $\Sigma E_{cl}/p_{tr}$ in tunable range (0.65 1.5)
 - -> can break up cluster if E/p too large (M. Thomson)
 - -> err on too few clusters can add later when defining neutral hadrons

Shower reconstruction by track extrapolation

Photon Finding

Now, high efficiency is desired so that all photons are defined — can optimize for both high efficiency and high purity by using multiple clustering.

Example:

- 1) Cone or DT cluster algorithm (high efficiency) with parameters:
 radius = 0.04
 seed = 0.0
 minE = 0.0
- 2) Cluster hits in cones with NN(1111) to define cluster core (high purity for photons)

mincells = 20 (minimum #cells in reclustered object) dTrCl = 0.02 (no tracks within .02)

3) Test with longitudinal H-Matrix and evaluate χ^2

Other evaluations are done in PhotonFinderDriver – like layer of first interaction if cluster fails mincells test, cluster E in HCAL, etc.

Photon Cluster Evaluation with (longitudinal) H-Matrix Average number of hit cells in photons passing H-Matrix cut Log ChisqD Probability Mean :-5.8141 100 MeV Rms: 3.4170 E (MeV) 100 250 500 1000 5000 <# hits> 116 9, 12 20 34 * min of 8 cells required Mean :-4.6043 250 MeV Rms: 2.8944 ChisqD Probability Mean :-2.7021 500 MeV Rms: 2.3217 Mean :-1.3643 Rms: 2.2538 1 GeV Entries: 1031 Mean :-1.1807 1000 Photons - W/Si ECAL (4mm X 4mm) 40 Nearest-Neighbor Cluster Algorithm candidates E (MeV) 1000 5000 5 GeV 100 250 500 Effic. (%) 66 94 96 96

Neutral Hadron ID

Here again, high efficiency is desired – if previous algorithms have performed well enough, purity will not be an issue.

Example:

Cluster with Directed Tree (another high efficiency clusterer)

- -> clean fragments with minimum cells
- -> check distance to nearest track if too close, discard
- -> merge remaining clusters if close

Needs additional ideas, techniques – pointing?, shape analysis?

PFA Demonstration

Plans for PFA Development

e+e- -> ZZ -> qq + vv @ 500 GeV

Development of PFAs on ~120 GeV jets – most common ILC jets Unambiguous dijet mass allows PFA performance to be evaluated w/o jet combination confusion PFA performance at constant mass, different jet E (compare to ZPole)

dE/E, $d\theta/\theta$ -> dM/M characterization with jet E

e+e--> ZZ -> qqqq @ 500 GeV

4 jets - same jet E, but filling more of detector
Same PFA performance as above?
Use for detector parameter evaluations (B-field, IR, granularity, etc.)

e+e- -> tt @ 500 GeV Lower E jets, but 6 – fuller detector

e+e- -> qq @ 500 GeV 250 GeV jets - challenge for PFA, not physics

