Prospects of Using Z→jj for Decay Independent Detection of Higgs

A. Raspereza, MPI Munich ALCPG'07 Meeting, Fermilab 23/10/2007

Decay Independent Higgs Detection

At ILC Higgs boson can be detected independent of its decay mode, even if it decays into invisible particles $H \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$

ILC "golden" channel : $ZH \rightarrow (ee, \mu\mu)X$

Peak in (ee, µµ) recoil mass spectrum

⇒ model independent extraction of ZZH coupling : $\sigma(ZH) \propto g^2_{HZZ}$

• $\sqrt{s} = 350 \text{ GeV}, L = 500 \text{ fb}^{-1}, Z \rightarrow ee, \mu\mu$ $\Rightarrow \delta\sigma/\sigma = 2.6(3.1)\% m_{H} = 120(160) \text{ GeV}$ [P.Garcia-Abia, W.Lohmann, EPJDirect C2 (2000)]

Can we also exploit $Z \rightarrow jj$ decays?

Toy Monte Carlo Analysis. Strategy

- Generation of signal and background samples with PYTHIA
 - ISR is on
 - Beamstrahlung is taken into account using CIRCE program
- Jet clustering on stable, detectable particles (no smearing of particle 4-momenta at this stage)
- Smearing of the "reconstructed" jet's energy, according to the assumed resolutions. Three scenarios studied : $\sigma(E_{jet})/E_{jet} = 20, 30, 40\%/\sqrt{E_{jet}}$
- Selection of jet pair with invariant mass compatible with $m_{_{7}}$
- Cut based selection exploiting only kinematics of Z decay products
- Analysis of the dijet recoil mass spectrum

Experimental Conditions and Generated Bkg and Signal Samples Study is performed for $\sqrt{s} = 350$ GeV,

assuming integrated lumi L=50 fb⁻¹

Higgs mass is set to 120GeV

Process	σ , fb	Expected events (50 fb ⁻¹)	Generated events
qq(y)	$2.7\cdot 10^6$	1.4 · 10 ⁶	$1.4 \cdot 10^{6}$
WW	$1.3 \cdot 10^{4}$	6.5 · 10 ⁵	$6.5 \cdot 10^{5}$
ZZ	$1.0 \cdot 10^{3}$	5.0 · 10 ⁴	$5.0\cdot10^{4}$
ZH qqbb	80	$4.0 \cdot 10^{3}$	$1.0 \cdot 10^{4}$
ZH qqcc	5	250	$1.0 \cdot 10^{4}$
ΖΗ ααττ	7	350	$1.0 \cdot 10^{4}$
ZH qqWW	13	650	$1.0 \cdot 10^{4}$
ZH qqgg	5	250	$1.0\cdot10^4$

Jet Clustering

- <u>No knowledge on Higgs decay</u> <u>mode is employed in the analysis.</u> <u>Various topologies possible:</u>
- × ZH \rightarrow qqbb, qqcc, qqgg, qq $\tau\tau \Rightarrow 4$ jets
- × ZH→qqWW ⇒ 4-6 jets (including isolated charged leptons)
- × ZH, Z \rightarrow qq, H \rightarrow invisible \Rightarrow 2 jets
- Events cannot be forced into predefined number of jets since the selection of various Higgs decays must be unbiased!
- Instead events are resolved into arbitrary number of jets using DURHAM algorithm steered by the cut on the jet resolution parameter : $log(y_{cut}) = -5.0$

Assigning jets to Z

- Only high multiplicity jets (# particles > 5) are accepted for further analysis
- At least two high multiplicity jets are required
- Four-momenta of these jets are smeared, according to the assumed jet energy resolution, jet velocity kept constant p/E = const, no angular smearing
- Jet pair with invariant mass closest to m_z is assigned for the Z decay
- Diagnostics of the jet pairing : jet pairs assigned to Z are compared to the "true" ones resulting from Z
- Definition of "true" jet pair : jets closest in (θ, φ) to the partons originating from the Z decay

Effect of Wrong Jet Pairing on Mass Distributions

 $ZH \rightarrow qqbb \ sample, \ \sigma(E_{jet})/E_{jet} = 30\%/\sqrt{E_{jet}}$

Selection of jet pair with the mass closest to m_z artificially improves dijet mass resolution. But recoil mass resolution deteriorates!

Cut on Dijet Mass

Applied cut : $|m_{jj} - m_{z}| < 10 \text{ GeV}$

ZZ and $qq(\gamma)$ [radiative returns to Z] backgrounds are peaking at m_{z}

WW events are peaking at m_w but also significantly contribute to the background [large tail at the righ side of the peak]

Cut on Polar Angle of Z

Characteristic angular distribution in the production of scalar particle

Z and H are produced centrally

All backgrounds are peaking in forward/backward region

Applied cut : $|cos\theta_z| < 0.75$

Cut on Transverse Momentum of Z

Applied cut : $P_{T,Z}$ >75 GeV

eliminates large fraction of WW background, where two highly boosted jets from different W bosons are assigned for the Z decay

Resulting Recoil Mass Spectra

No clear peak is seen in the recoil mass spectrum... nonetheless signal in the mass region of interest is significant ⇒ cross section measurement possible!

Recoil Mass Spectra. Signal Only

Signal Efficiencies

Signal efficiency weakly depends on Higgs decay channel ⇒ decay independent x-sec measurement feasible

Estimated Error on $\sigma(ZH)$ $L=50 \ fb^{-1} @ \sqrt{s}=350 \ GeV$

$\sigma(E_{_{jet}})/E_{_{jet}}$	20%/√E	30%/√E	40%/√E
Bkg events	17030	17400	17650
Signal events	1640	1510	1400
$\delta\sigma/\sigma$ stat	8.33%	9.11%	9.86%
$\delta\sigma/\sigma$ sys	4.49%	4.27%	4.20%

Relative statistical error = $\sqrt{S+B/S}$

Systematic error is evaluated from the spread of signal efficiency across different Higgs decay modes

- Prospect of using Z→jj for the decay independent Higgs detection in ZH process is studies with toy MC analysis
 - No clear mass peak in the recoil mass spectrum
 - Nonetheless, excess of events w.r.t. background expectation in the mass region of interest is sizable ⇒ cross section measurement seems feasible
- Take results of these studies with caution
 - Simple toy MC analysis used, no full simulation of detector response, no realistic event reconstruction
 - Not all backgrounds are considered [$e^+e^- \rightarrow Zee, We_V \dots$]
 - Not all Higgs decays studied [$H \rightarrow \gamma \gamma$, γZ , invisible...]
 - Analysis is far from optimal : unsophisticated procedure of jet assignment for the Z decay exploited, simple cut-based selection applied