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Higgs coupling measurements are a big selling point for the ILC.
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How do theory uncertainties affect this picture?
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Overview:

Theory uncertainties in Higgs couplings are around the percent-

ish level.

Start to have a significant impact when experimental uncertain-

ties get below the percent level.

This happens at high-energy / high-luminosity running (e.g.,

1000 fb−1 at 1000 GeV).

Most important theory uncertainties are parametric:

- mb (current uncertainty 0.95%) – feeds into Γb calculation

- αs (current uncertainty 1.7%) – feeds into Γb, Γc, Γg calculation
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Expected experimental uncertainties

“Phase 1”: 500 fb−1 at 350 GeV, no beam polarization
SM Higgs branching ratio uncertainties

mH = 120 GeV 140 GeV
BR(b̄b) 2.4% 2.6%
BR(cc̄) 8.3% 19.0%
BR(ττ) 5.0% 8.0%

BR(WW ) 5.1% 2.5%
BR(gg) 5.5% 14.0%

from K. Desch, hep-ph/0311092

“Phase 2”: 1000 fb−1 at 1000 GeV, −80% e− / +60% e+ pol’n

SM Higgs cross section times BR statistical uncertainties
mH = 115 GeV 120 GeV 140 GeV

σ ×BR(b̄b) 0.3% 0.4% 0.5%
σ ×BR(WW ) 2.1% 1.3% 0.5%
σ ×BR(gg) 1.4% 1.5% 2.5%
σ ×BR(γγ) 5.3% 5.1% 5.9%

from T. Barklow, hep-ph/0312268
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Theoretical uncertainties

Higgs observable Theory uncertainty
Γb̄b, Γcc̄ 1%
Γττ , Γµµ 0.01%

ΓWW , ΓZZ 0.5%
Γgg 3%
Γγγ 0.1%

σe+e−→νν̄H 0.5%

Γqq̄: N3LO QCD for mq = 0; NLO for mq 6= 0; NNLO top-loop

contrib’n; 4-loop mq(mH); NLO EW.

ΓV V : PROPHECY4F full NLO off-shell H → 4f .

Γgg: mt-dependent NLO QCD; N3LO in heavy-quark limit.

σe+e−→νν̄H: Full NLO EW RC’s.
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Parametric uncertainties

Parameter Value Percent uncertainty
αs(mZ) 0.1185± 0.0020 1.7%
mb(Mb) 4.20± 0.04 GeV 0.95%
mc(Mc) 1.224± 0.057 GeV 4.7%

αs: world average from PDG.
I’ll address improvement of αs at ILC in a little while.

mb and mc: from fits to kinematic moments in inclusive semilep-
tonic B meson decays. Uncertainties dominated by theory un-
certainty in QCD corrections to HQET expansions.

Other methods:
- e+e− → hadrons: fit to moments of σ(

√
s).

Gaps in expt data & uncert in (large) quarkonium resonance contrib’ns

QCD corr’s to theory predictions of moments.

- Lattice QCD: fit to meson spectra.
QCD corr’s to bare lattice mass → MS conversion.
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Quantifying the impact of theory & parametric uncertainties:
- Question: “How well can you distinguish SM from BSM?”
- Choose a particular BSM model: MSSM mmax

h scenario.
- Construct a ∆χ2 between observables in SM and in BSM model.
- Look at “reach” (e.g., in MA) for a 5σ (∆χ2 = 25) discrepancy.

χ2 observable

χ2 =
n∑

i=1

n∑
j=1

(QM1
i −Q

M2
i )[σ2]−1

ij (QM1
j −Q

M2
j )

Qi: the observables.
[σ2]−1

ij : inverse of the covariance matrix σ2
ij,

σ2
ij = δijuiuj +

m∑
k=1

ck
i ck

j .

Straightforward to take into account both uncorrelated uncer-
tainties ui and correlated uncertainties ck

i .

Have to propagate the theoretical and parametric uncertainties
to the observables Qi.
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Propagation of theory & parametric uncertainties

Convenient to work entirely with fractional uncertainties.

Uncertainty in BRi due to theoretical uncertainty in Γk:

ck
i =

Γk

BRi

∂BRi

∂Γk
σΓk

where
Γk

BRi

∂BRi

∂Γk
=

{
−BRk for i 6= k
(1−BRk) for i = k.

Uncertainty in BRi due to parametric uncertainty in input xj:

c
xj
i =

xj

BRi

∂BRi

∂xj
σxj =

n∑
k=1

[
Γk

BRi

∂BRi

∂Γk

] [
xj

Γk

∂Γk

∂xj

]
σxj

Normalized derivatives (x/Γ)(∂Γ/∂x):

Normalized derivatives of Higgs partial widths
αs(mZ) mb(Mb) mc(Mc)

mH 120 GeV 140 GeV 120 GeV 140 GeV 120 GeV 140 GeV
Γb̄b −1.177 −1.217 2.565 2.567 0.000 0.000
Γcc̄ −4.361 −4.400 −0.083 −0.084 3.191 3.192
Γgg 2.277 2.221 −0.114 −0.112 −0.039 −0.032
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Results
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Phase 1: Reach ∼ 500 GeV without thy/param uncerts.
Reduced by about 10% by including thy/param uncerts.

Phase 2: Reach ∼ 1200 GeV without thy/param uncerts.
Reduced by about 2× to ∼ 600 GeV including thy/param uncerts.
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Phase 1:

Parametric and theoretical uncertainties make all the measure-

ments a little worse.

Sample point on experimental uncert only ∆χ2 = 25 contour:

Phase 1 sample point: MA = 537.6 GeV, tanβ = 20
Observable Shift Expt uncert Pull Thy+par uncert Total uncert Pull

BR(b̄b) 8.1% 2.5% 3.25 1.6% 3.0% 2.71
BR(cc̄) −12.0% 13.2% −0.90 16.1% 20.8% −0.57
BR(ττ) 10.0% 6.4% 1.56 1.8% 6.6% 1.51

BR(WW ) −11.6% 3.9% −2.96 1.8% 4.3% −2.68
BR(gg) −14.7% 9.4% −1.56 5.8% 11.1% −1.33

∑
(Pull)2:

25 with experimental uncertainties only

18.9 summing “Total uncert” pulls above

17.4 including correlations
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Phase 1:
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Effect is mostly due to mb and αs input uncertainties.
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Phase 2:
Parametric and theoretical uncertainties have a huge impact on
the measurements, especially the most precise Phase 2 rates.

Sample point on experimental uncert only ∆χ2 = 25 contour:

Phase 2 sample point: MA = 1302.4 GeV, tanβ = 20
Observable Shift Expt uncert Pull Thy+par uncert Total uncert Pull
σ ×BR(b̄b) 1.7% 0.45% 3.72 1.7% 1.8% 0.93

σ ×BR(WW ) −2.1% 0.93% −2.22 1.9% 2.1% −0.98
σ ×BR(gg) −4.6% 2.0% −2.32 5.8% 6.2% −0.74
σ ×BR(γγ) 0.27% 5.5% 0.05 1.9% 5.8% 0.05

BR(b̄b) 1.7% 2.5% 0.67 1.7% 3.0% 0.55
BR(cc̄) −2.5% 13.3% −0.19 16.1% 20.8% −0.12
BR(ττ) 2.1% 6.4% 0.34 1.8% 6.6% 0.32

BR(WW ) −2.1% 3.9% −0.53 1.8% 4.3% −0.48
BR(gg) −4.6% 9.4% −0.48 5.8% 11.1% −0.41

∑
(Pull)2:

25 with experimental uncertainties only
3.2 summing “Total uncert” pulls above
1.7 including correlations
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Phase 2:
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Effect is again mostly due to mb and αs uncertainties.

Theory uncertainty in Γb (and Γg at low tanβ) also moderately
important.
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Outlook: αs

ILC measurements will improve the precision on αs(mZ) by & 2×:
- Event shape observables
- σtt̄/σµ+µ− above 2mt

- Γhad
Z /Γlept

Z at Z pole (GigaZ option)

Effect of improving ∆αs(mZ)

from 0.0020 (1.7%) [current PDG]

to 0.0009 (0.76%) [Tesla TDR]

(includes GigaZ).

Not much impact unless

∆mb(Mb) is also improved.
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Outlook: other observables

Phase 2 experimental precision dominated by three channels:
σ×BR(b̄b), σ×BR(gg): suffer directly from large par/thy uncerts.
σ ×BR(WW ): affected indirectly through Higgs total width.

“Error ellipsoid” is wide in some directions, narrow in others.
Choosing a model chooses a slice through the error ellipsoid.

A brief foray into the MSSM:
Study characteristic features of MSSM Higgs couplings:

gh0t̄t

gHSMt̄t
=

gh0c̄c

gHSMc̄c
= sin(β − α) + cotβ cos(β − α)

gh0b̄b

gHSMb̄b

=
gh0ττ

gHSMττ
= sin(β − α)− tanβ cos(β − α)

gh0WW

gHSMWW
=

gh0ZZ

gHSMZZ
= sin(β − α)

Interested in the approach to decoupling:

cos(β − α) '
1

2
sin 4β

m2
Z

M2
A

−→ 0 for MA � mZ
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Plug in and keep leading term in m2
Z/M2

A:

δΓW

ΓW
=

δΓZ

ΓZ
' −

1

4
sin2 4β

m4
Z

M4
A

' −4cot2 β
m4

Z

M4
A

δΓb

Γb
'

δΓτ

Γτ
' − tanβ sin 4β

m2
Z

M2
A

' +4
m2

Z

M2
A

δΓc

Γc
' cotβ sin 4β

m2
Z

M2
A

' −4cot2 β
m2

Z

M2
A

(Last equality: used large tanβ approximation sin 4β ' −4cotβ.)

Biggest deviations from SM are in Γb and Γτ .

Shifts in Γc and Γg are cotβ suppressed.

Shifts in ΓW and σνν̄H are typically quite small: ∼ (mZ/mA)4.

This picture is not dramatically altered by radiative corrections.
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Figure 1: Deviations of Higgs partial widths from their SM values in the maximal-mixing scenario.

34

[Carena, Haber, H.L., Mrenna, hep-ph/0106116]
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Parametric & theoretical uncertainties are washing out sensitivity

to shift in Γb relative to ΓW !

Want another non-hadronic final state to restore sensitivity.

σ ×BR(ττ) would be perfect.

Sensitivity would come from the ratio:

σ ×BR(ττ)

σ ×BR(WW )
=

Γτ

ΓW

- mb, αs, QCD uncertainties in total width cancel.

- Ratio Γτ/ΓW exhibits large deviation from SM.

Using covariance matrix in ∆χ2 means we don’t need to play with ratios:

everything is automatic.
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Going from Phase 1 to Phase 2, expt precision on key final states

improves:

b̄b: 5–6× WW : 4–5× gg: 3.5–5.5×

“Reasonable” to expect similar improvement in ττ :

assume 4× and see what happens.

“Phase 2”: 1000 fb−1 at 1000 GeV, −80% e− / +60% e+ pol’n

SM Higgs cross section times BR statistical uncertainties
mH = 115 GeV 120 GeV 140 GeV

σ ×BR(b̄b) 0.3% 0.4% 0.5%
σ ×BR(WW ) 2.1% 1.3% 0.5%
σ ×BR(gg) 1.4% 1.5% 2.5%
σ ×BR(γγ) 5.3% 5.1% 5.9%
σ ×BR(ττ) – 1.3% 2.0%

Original selection required
∑

vis = mH; have to change this for ττ .
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Effect of adding a measurement of σ ×BR(ττ) in Phase 2:
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Not a big effect on expt-only reach.

Much bigger effect once param/theory uncertainties are included.

Heather Logan Effects of theory uncerts in Higgs coupling meas at ILC ALCPG’07

20



Outlook: a worry about b, c, g separation

QCD corr’s to H → gg are calculated using dispersion:

=m part of forward scattering, with everything possible

in the loop.

Figure 2: Typical Feynman diagrams contributing to the correlator 〈Õ′
1Õ

′
1〉. Looped,

solid, and dashed lines represent gluons, light quarks, and A bosons, respectively. Solid
circles represent insertions of Õ′

1.

where Π2,ij is the renormalized version of Π0
2,ij. In fact, it can be shown that Π0

1,ij van-

ishes on kinematical grounds. As is well known, Õ′
1 can be written as the divergence

of the so-called Chern-Simons current, K ′,µ = εµνρσK ′
νρσ with K ′

νρσ = 4G0′,a
ν ∂ρG0′,a

σ +

(4/3)g0′
s fabcG0′,a

ν G0′,b
ρ G0′,c

σ , i.e. Õ′
1 = ∂µK ′,µ, which is an exact identity. This implies that

Õ′
1,µνρσ = ∂[µK ′

νρσ]. Thus, the correlator in Eq. (20) is represented by just one term

proportional to q[µq[µ′〈K ′
νρσ]K

′,ν′ρ′σ′]〉, whence it follows that Π0
1,ij = 0.

Due to Eq. (6), all three correlators 〈Õ′
1Õ

′
1〉, 〈Õ′

1Õ
′
2〉, and 〈Õ′

2Õ
′
2〉 contribute to 〈[Õ′

1][Õ
′
1]〉,

the absorptive part of which we wish to calculate through O(α2
s). At the three-loop level,

these three correlators receive contributions from 403, 28, and 33 massless diagrams, re-
spectively. Typical examples pertaining to 〈Õ′

1Õ
′
1〉 are depicted in Fig. 2. We generate

and evaluate the contributing diagrams with the packages QGRAF [25] and MINCER
[31], which is written in FORM [27]. We work in the covariant gauge with arbitrary
gauge parameter. The cancellation of the latter in the final results serves as a welcome
check.

Our results for the absorptive parts of the renormalized correlators read

Im
〈[

Õ′

1

] [
Õ′

1

]〉
=

(q2)2

π
NA

{
1 +

α(nl)
s (µ)

π

[
CA

(
97

12
+

11

6
ln

µ2

q2

)
+ Tnl

(
−7

3

10

This includes g splitting to qq̄: needed to cancel IR divergence

in quark bubble in g leg.

But H → gg → qq̄g could be tagged as H → qq̄ → qq̄g!

How to separate these is a question of expt cuts.

HDECAY’s approach: switch for including/excluding heavy flavors

in gluon splitting.

NF-GG Γgg Γb̄b Γcc̄
5 – – –
4 −9% +1% –
3 −12% – +30%

numbers for mH = 120 GeV
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Conclusions (1/2)

Theory uncertainties are at the level of a couple of percent.

Start to have a significant impact when experimental uncertain-

ties get below the percent level – big impact on Phase 2.

Most important theory/parametric uncertainties are:

mb (current uncertainty 0.95%) – feeds into Γb calculation

- Improving this is important!

- Need more QCD theory work on semileptonic B decay spectra.

αs (current uncertainty 1.7%) – feeds into Γb, Γc, Γg calculation

- Will improve by & 2× at ILC. GigaZ valuable here.

Understanding the pattern of theory/parametric uncertainties

points out the most valuable new experimental channels.

Adding σ×BR(ττ): small impact with only experimental uncerts;

huge impact after theory & parametric uncertainties included.
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Conclusions (2/2)

Wish list:

[expt] σ ×BR(H → ττ) at 1 TeV.

[expt] Quantify correlations among experimental uncertainties.

[thy] Better mb extraction from existing data.

[thy/expt] How to deal with gluon splitting to heavy quarks.
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