
Effects of theory uncertainties in Higgs coupling measurements at the ILC

> Heather Logan (Carleton University)

> > Based on A. Droll & HEL, hep-ph/0612317

Higgs coupling measurements are a big selling point for the ILC.

How do theory uncertainties affect this picture?

Overview:

Theory uncertainties in Higgs couplings are around the percentish level.

Start to have a significant impact when experimental uncertainties get below the percent level.

This happens at high-energy / high-luminosity running (e.g., 1000 fb⁻¹ at 1000 GeV).

Most important theory uncertainties are parametric:

- m_b (current uncertainty 0.95%) feeds into Γ_b calculation
- α_s (current uncertainty 1.7%) feeds into Γ_b , Γ_c , Γ_g calculation

Expected experimental uncertainties

"Phase 1":	500 fb $^{-1}$ at 350	GeV, no bea	am polarization
SM Higgs	branching ratio u	ncertainties	
	$m_H = 120 { m GeV}$	140 GeV	
$BR(b\overline{b})$	2.4%	2.6%	
$BR(c\bar{c})$	8.3%	19.0%	
BR(au au)	5.0%	8.0%	
BR(WW)	5.1%	2.5%	
BR(gg)	5.5%	14.0%	

from K. Desch, hep-ph/0311092

"Phase 2": 100	0 fb $^{-1}$ at 1000 G	GeV, -80%	e^- / +60% e^+ pc	ol'n
SM Higgs cros	s section times E	BR statistica	al uncertainties	
	$m_H = 115 \text{ GeV}$	120 GeV	140 GeV	
$\sigma imes BR(b\overline{b})$	0.3%	0.4%	0.5%	
$\sigma imes BR(WW)$	2.1%	1.3%	0.5%	
$\sigma imes BR(gg)$	1.4%	1.5%	2.5%	
$\sigma imes BR(\gamma\gamma)$	5.3%	5.1%	5.9%	

from T. Barklow, hep-ph/0312268

Heather Logan Effects of theory uncerts in Higgs coupling meas at ILC ALCPG'07

4

Theoretical uncertainties

Higgs observable	Theory uncertainty
$\Gamma_{b\overline{b}}, \Gamma_{c\overline{c}}$	1%
$\Gamma_{ au au}$, $\Gamma_{\mu\mu}$	0.01%
Γ_{WW} , Γ_{ZZ}	0.5%
Γ_{qq}	3%
$\Gamma_{\gamma\gamma}$	0.1%
$\sigma_{e^+e^- \rightarrow \nu \bar{\nu} H}$	0.5%

 $\Gamma_{q\bar{q}}$: N³LO QCD for $m_q = 0$; NLO for $m_q \neq 0$; NNLO top-loop contrib'n; 4-loop $\overline{m_q}(m_H)$; NLO EW.

 Γ_{VV} : PROPHECY4F full NLO off-shell $H \rightarrow 4f$.

 Γ_{gg} : m_t -dependent NLO QCD; N³LO in heavy-quark limit.

 $\sigma_{e^+e^- \rightarrow \nu \overline{\nu} H}$: Full NLO EW RC's.

Parametric uncertainties

Parameter	Value	Percent uncertainty
$\alpha_s(m_Z)$	0.1185 ± 0.0020	1.7%
$\overline{m_b}(M_b)$	$4.20\pm0.04~\text{GeV}$	0.95%
$\overline{m_c}(M_c)$	$1.224\pm0.057~\text{GeV}$	4.7%

 α_s : world average from PDG.

I'll address improvement of α_s at ILC in a little while.

 m_b and m_c : from fits to kinematic moments in inclusive semileptonic B meson decays. Uncertainties dominated by theory uncertainty in QCD corrections to HQET expansions.

Other methods:

- $e^+e^- \rightarrow$ hadrons: fit to moments of $\sigma(\sqrt{s})$.

Gaps in expt data & uncert in (large) quarkonium resonance contrib'ns QCD corr's to theory predictions of moments.

- Lattice QCD: fit to meson spectra.

QCD corr's to bare lattice mass $\rightarrow \overline{MS}$ conversion.

Quantifying the impact of theory & parametric uncertainties:

- Question: "How well can you distinguish SM from BSM?"
- Choose a particular BSM model: MSSM m_h^{max} scenario.
- Construct a $\Delta \chi^2$ between observables in SM and in BSM model.
- Look at "reach" (e.g., in M_A) for a 5σ ($\Delta\chi^2 = 25$) discrepancy.

 χ^2 observable

$$\chi^2 = \sum_{i=1}^n \sum_{j=1}^n (Q_i^{M_1} - Q_i^{M_2}) [\sigma^2]_{ij}^{-1} (Q_j^{M_1} - Q_j^{M_2})$$

 Q_i : the observables.

 $[\sigma^2]_{ii}^{-1}$: inverse of the covariance matrix σ_{ii}^2 ,

$$\sigma_{ij}^2 = \delta_{ij}u_iu_j + \sum_{k=1}^m c_i^k c_j^k.$$

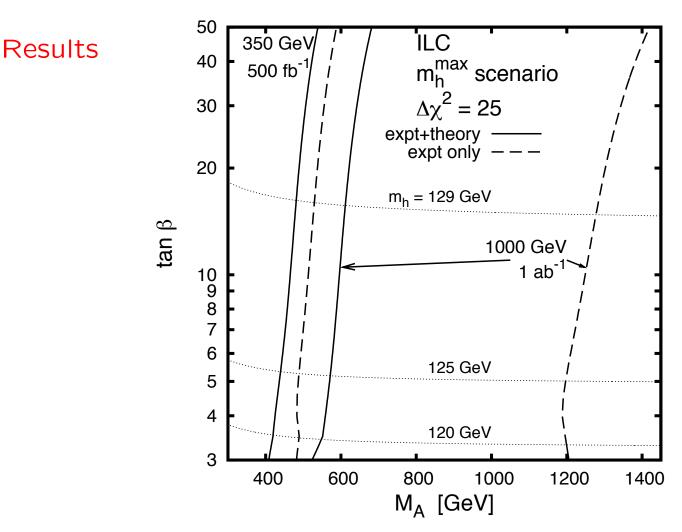
Straightforward to take into account both uncorrelated uncertainties u_i and correlated uncertainties c_i^k .

Have to propagate the theoretical and parametric uncertainties to the observables Q_i .

Propagation of theory & parametric uncertainties Convenient to work entirely with fractional uncertainties.

Uncertainty in BR_i due to theoretical uncertainty in Γ_k :

$$c_i^k = \frac{\Gamma_k}{\mathsf{BR}_i} \frac{\partial \mathsf{BR}_i}{\partial \Gamma_k} \sigma_{\Gamma_k} \quad \text{where} \quad \frac{\Gamma_k}{\mathsf{BR}_i} \frac{\partial \mathsf{BR}_i}{\partial \Gamma_k} = \begin{cases} -\mathsf{BR}_k & \text{for } i \neq k \\ (1 - \mathsf{BR}_k) & \text{for } i = k. \end{cases}$$


Uncertainty in BR_i due to parametric uncertainty in input x_j :

$$c_i^{x_j} = \frac{x_j}{\mathsf{BR}_i} \frac{\partial \mathsf{BR}_i}{\partial x_j} \sigma_{x_j} = \sum_{k=1}^n \left[\frac{\mathsf{\Gamma}_k}{\mathsf{BR}_i} \frac{\partial \mathsf{BR}_i}{\partial \mathsf{\Gamma}_k} \right] \left[\frac{x_j}{\mathsf{\Gamma}_k} \frac{\partial \mathsf{\Gamma}_k}{\partial x_j} \right] \sigma_{x_j}$$

Normalized derivatives $(x/\Gamma)(\partial\Gamma/\partial x)$:

Normalized derivatives of Higgs partial widths

				55 1		
	$\alpha_s(n)$	m_Z)	$\overline{m_b}($	<i>M</i> _b)	$\overline{m_c}($	M_c)
$\overline{m_H}$	120 GeV	140 GeV	120 GeV	140 GeV	120 GeV	140 GeV
$\Gamma_{b\overline{b}}$	-1.177	-1.217	2.565	2.567	0.000	0.000
$\Gamma_{c\overline{c}}$	-4.361	-4.400	-0.083	-0.084	3.191	3.192
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	2.277	2.221	-0.114	-0.112	-0.039	-0.032

Phase 1: Reach \sim 500 GeV without thy/param uncerts. Reduced by about 10% by including thy/param uncerts.

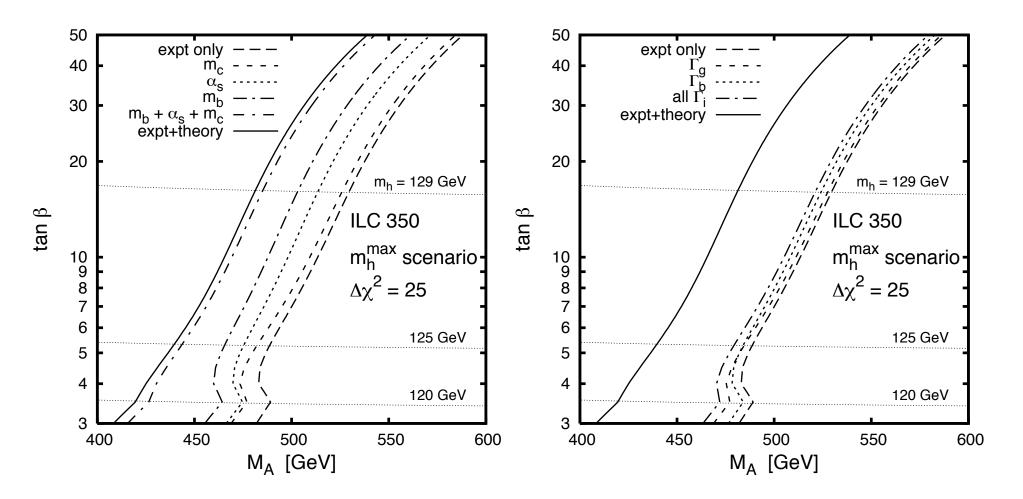
Phase 2: Reach \sim 1200 GeV without thy/param uncerts. Reduced by about 2× to \sim 600 GeV including thy/param uncerts.

Heather Logan Effects of theory uncerts in Higgs coupling meas at ILC ALCPG'07

9

Phase 1:

Parametric and theoretical uncertainties make all the measurements a little worse.


Sample point on experimental uncert only $\Delta \chi^2 = 25$ contour:

	Dhaco	1 comple poi	$a+\cdot \lambda I =$	-5276 Cold top β	- 20	
		· · ·		= 537.6 GeV, tan β		
Observable	Shift	Expt uncert	Pull	Thy+par uncert	Total uncert	Pull
$BR(b\overline{b})$	8.1%	2.5%	3.25	1.6%	3.0%	2.71
$BR(c\overline{c})$	-12.0%	13.2%	-0.90	16.1%	20.8%	-0.57
BR(au au)	10.0%	6.4%	1.56	1.8%	6.6%	1.51
BR(WW)	-11.6%	3.9%	-2.96	1.8%	4.3%	-2.68
BR(gg)	-14.7%	9.4%	-1.56	5.8%	11.1%	-1.33

 $\sum (\text{Pull})^2$:

- 25 with experimental uncertainties only
- 18.9 summing "Total uncert" pulls above
- 17.4 including correlations

Phase 1:

Effect is mostly due to m_b and α_s input uncertainties.

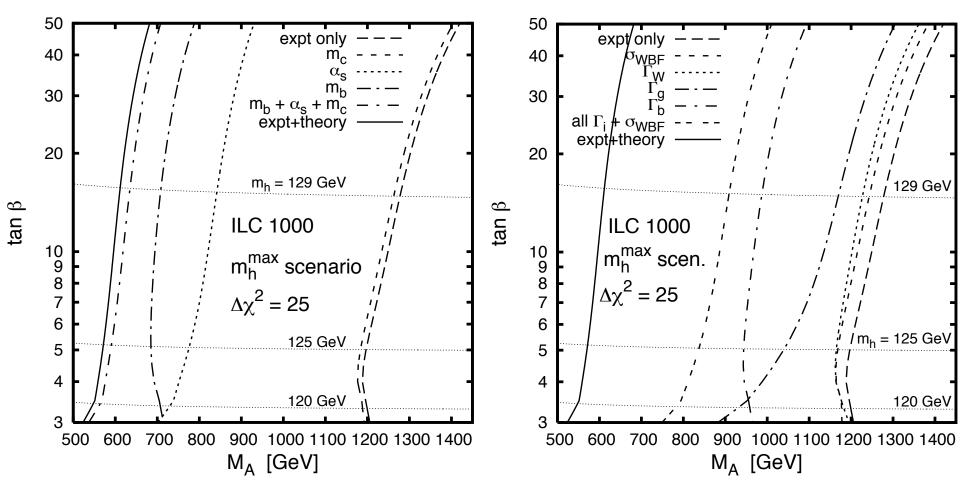
Heather Logan Effects of theory uncerts in Higgs coupling meas at ILC ALCPG'07

11

Phase 2:

Parametric and theoretical uncertainties have a huge impact on the measurements, especially the most precise Phase 2 rates.

Sample point on experimental uncert only $\Delta \chi^2 = 25$ contour:


	Phase	2 sample point	t: $M_A =$	1302.4 GeV, $\tan\beta$	= 20	
Observable	Shift	Expt uncert	Pull	Thy+par uncert	Total uncert	Pull
$\sigma \times BR(b\overline{b})$	1.7%	0.45%	3.72	1.7%	1.8%	0.93
$\sigma imes BR(WW)$	-2.1%	0.93%	-2.22	1.9%	2.1%	-0.98
$\sigma imes BR(gg)$	-4.6%	2.0%	-2.32	5.8%	6.2%	-0.74
$\sigma imes BR(\gamma\gamma)$	0.27%	5.5%	0.05	1.9%	5.8%	0.05
$BR(b\overline{b})$	1.7%	2.5%	0.67	1.7%	3.0%	0.55
$BR(c\overline{c})$	-2.5%	13.3%	-0.19	16.1%	20.8%	-0.12
BR(au au)	2.1%	6.4%	0.34	1.8%	6.6%	0.32
BR(WW)	-2.1%	3.9%	-0.53	1.8%	4.3%	-0.48
BR(gg)	-4.6%	9.4%	-0.48	5.8%	11.1%	-0.41

$\sum (\text{Pull})^2$:

25 with experimental uncertainties only

- 3.2 summing "Total uncert" pulls above
- 1.7 including correlations

Phase 2:

Effect is again mostly due to m_b and α_s uncertainties.

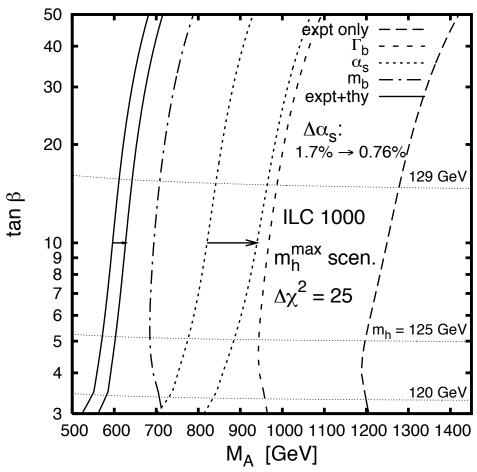
Theory uncertainty in Γ_b (and Γ_g at low tan β) also moderately important.

Heather Logan Effects of theory uncerts in Higgs coupling meas at ILC ALCPG'07

13

Outlook: α_s

ILC measurements will improve the precision on $\alpha_s(m_Z)$ by $\gtrsim 2 \times$:


- Event shape observables

-
$$\sigma_{t \overline{t}} / \sigma_{\mu^+ \mu^-}$$
 above 2 m_t

- $\Gamma_Z^{had}/\Gamma_Z^{lept}$ at Z pole (GigaZ option)

Effect of improving $\Delta \alpha_s(m_Z)$ from 0.0020 (1.7%) [current PDG] to 0.0009 (0.76%) [Tesla TDR] (includes GigaZ).

Not much impact unless $\Delta \overline{m_b}(M_b)$ is also improved.

Outlook: other observables

Phase 2 experimental precision dominated by three channels: $\sigma \times BR(b\overline{b}), \sigma \times BR(gg)$: suffer directly from large par/thy uncerts. $\sigma \times BR(WW)$: affected indirectly through Higgs total width.

"Error ellipsoid" is wide in some directions, narrow in others. Choosing a model chooses a slice through the error ellipsoid.

A brief foray into the MSSM:

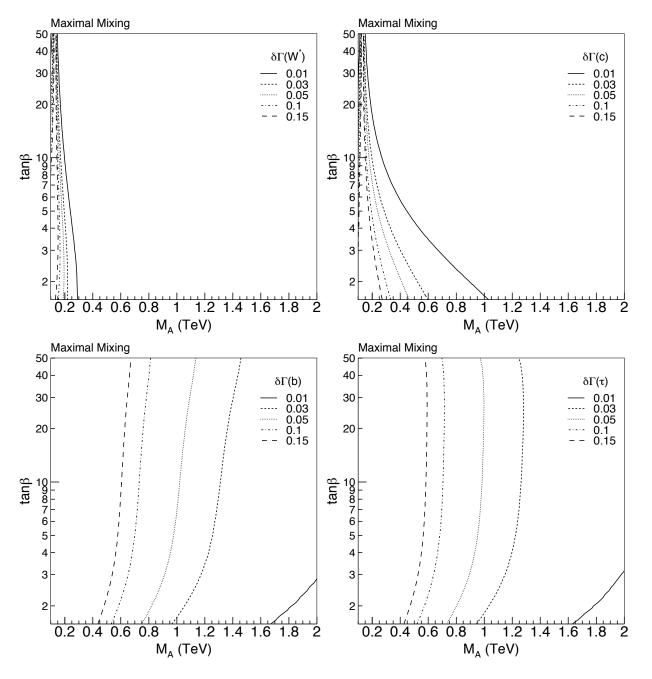
Study characteristic features of MSSM Higgs couplings:

$$\frac{g_{h} o_{\bar{t}t}}{g_{H_{SM}\bar{t}t}} = \frac{g_{h} o_{\bar{c}c}}{g_{H_{SM}\bar{c}c}} = \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)$$

$$\frac{g_{h} o_{\bar{b}b}}{g_{H_{SM}\bar{b}b}} = \frac{g_{h} o_{\tau\tau}}{g_{H_{SM}\tau\tau}} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)$$

$$\frac{g_{h} o_{WW}}{g_{H_{SM}WW}} = \frac{g_{h} o_{ZZ}}{g_{H_{SM}ZZ}} = \sin(\beta - \alpha)$$
Interested in the approach to decoupling:

$$\cos(\beta - \alpha) \simeq \frac{1}{2}\sin 4\beta \frac{m_Z^2}{M_A^2} \longrightarrow 0 \text{ for } M_A \gg m_Z$$


Plug in and keep leading term in m_Z^2/M_A^2 :

$$\frac{\delta\Gamma_W}{\Gamma_W} = \frac{\delta\Gamma_Z}{\Gamma_Z} \simeq -\frac{1}{4}\sin^2 4\beta \frac{m_Z^4}{M_A^4} \simeq -4\cot^2 \beta \frac{m_Z^4}{M_A^4}$$
$$\frac{\delta\Gamma_b}{\Gamma_b} \simeq \frac{\delta\Gamma_\tau}{\Gamma_\tau} \simeq -\tan\beta\sin 4\beta \frac{m_Z^2}{M_A^2} \simeq +4\frac{m_Z^2}{M_A^2}$$
$$\frac{\delta\Gamma_c}{\Gamma_c} \simeq \cot\beta\sin 4\beta \frac{m_Z^2}{M_A^2} \simeq -4\cot^2 \beta \frac{m_Z^2}{M_A^2}$$

(Last equality: used large $\tan \beta$ approximation $\sin 4\beta \simeq -4 \cot \beta$.)

Biggest deviations from SM are in Γ_b and Γ_{τ} . Shifts in Γ_c and Γ_g are $\cot \beta$ suppressed. Shifts in Γ_W and $\sigma_{\nu \bar{\nu} H}$ are typically quite small: $\sim (m_Z/m_A)^4$.

This picture is not dramatically altered by radiative corrections.

Parametric & theoretical uncertainties are washing out sensitivity to shift in Γ_b relative to Γ_W !

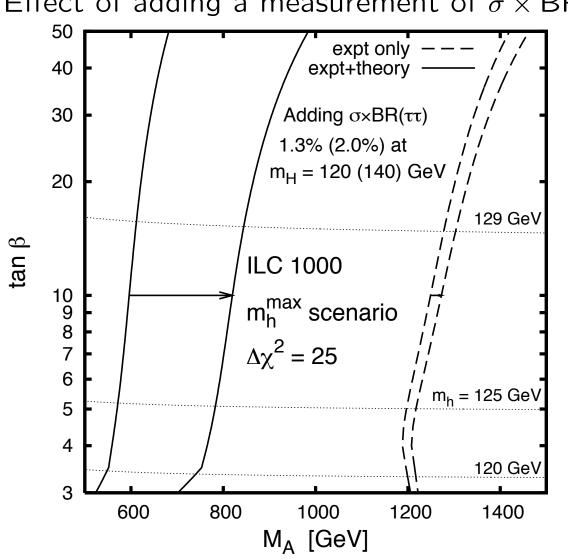
Want another non-hadronic final state to restore sensitivity. $\sigma \times BR(\tau \tau)$ would be perfect.

Sensitivity would come from the ratio:

$$\frac{\sigma \times \mathsf{BR}(\tau\tau)}{\sigma \times \mathsf{BR}(WW)} = \frac{\Gamma_{\tau}}{\Gamma_{W}}$$

- m_b , α_s , QCD uncertainties in total width cancel.
- Ratio Γ_{τ}/Γ_{W} exhibits large deviation from SM.

Using covariance matrix in $\Delta\chi^2$ means we don't need to play with ratios: everything is automatic.

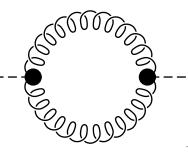

Going from Phase 1 to Phase 2, expt precision on key final states improves:

 $b\overline{b}$: 5-6× WW: 4-5× gg: 3.5-5.5×

"Reasonable" to expect similar improvement in $\tau\tau$: assume $4\times$ and see what happens.

"
Phase 2": 1000 fb⁻¹ at 1000 GeV, $-80\% e^-$ / $+60\% e^+$ pol'n SM Higgs cross section times BR statistical uncertainties $m_H = 115 \text{ GeV}$ 120 GeV 140 GeV $\sigma \times \mathsf{BR}(b\overline{b})$ 0.3% 0.4% 0.5% $\sigma \times BR(WW)$ 2.1% 0.5% 1.3% $\sigma \times \mathsf{BR}(gg)$ 1.5% 2.5% 1.4% $\sigma \times \mathsf{BR}(\gamma\gamma)$ 5.3% 5.1% 5.9% $\sigma \times \mathsf{BR}(\tau \tau)$ 1.3% 2.0%

Original selection required $\sum vis = m_H$; have to change this for $\tau\tau$.



Effect of adding a measurement of $\sigma \times BR(\tau \tau)$ in Phase 2:

Not a big effect on expt-only reach. Much bigger effect once param/theory uncertainties are included.

Outlook: a worry about b, c, g separation

QCD corr's to $H \rightarrow gg$ are calculated using dispersion: Sm part of forward scattering, with everything possible in the loop.

This includes g splitting to $q\bar{q}$: needed to cancel IR divergence in quark bubble in g leg.

But $H \to gg \to q\bar{q}g$ could be tagged as $H \to q\bar{q} \to q\bar{q}g!$ How to separate these is a question of expt cuts.

HDECAY's approach: switch for including/excluding heavy flavors in gluon splitting.

NF-GG	Γ_{gg}	$\Gamma_{b\overline{b}}$	$\Gamma_{c\overline{c}}$
5	—	_	_
4	-9%	+1%	—
3	-12%	_	+30%

Conclusions (1/2)

Theory uncertainties are at the level of a couple of percent.

Start to have a significant impact when experimental uncertainties get below the percent level - big impact on Phase 2.

Most important theory/parametric uncertainties are:

- m_b (current uncertainty 0.95%) feeds into Γ_b calculation
- Improving this is important!
- Need more QCD theory work on semileptonic B decay spectra.
- α_s (current uncertainty 1.7%) feeds into Γ_b , Γ_c , Γ_g calculation
- Will improve by $\gtrsim 2\times$ at ILC. GigaZ valuable here.

Understanding the pattern of theory/parametric uncertainties points out the most valuable new experimental channels. Adding $\sigma \times BR(\tau \tau)$: small impact with only experimental uncerts; huge impact after theory & parametric uncertainties included. Conclusions (2/2)

Wish list:

```
[expt] \sigma \times BR(H \rightarrow \tau \tau) at 1 TeV.
```

[expt] Quantify correlations among experimental uncertainties.

[thy] Better m_b extraction from existing data.

[thy/expt] How to deal with gluon splitting to heavy quarks.