New developments in MadGraph/MadEvent 4

Johan Alwall (SLAC)

Fabio Maltoni (UCL)Tim Stelzer (UIUC)Simon de Visscher (UCL)Rikkert Frederix (UCL)Michel Herquet (UCL)Claude Duhr (UCL)Tilman Plehn (Edinburgh)David Rainwater (Rochester)JHEP 0709:028,2007 (arXiv:0706.2334)ALCPG 2007, Fermilab, Oct 22-26, 2007

• Question:

How do I easily and efficiently generate events for (almost) any process, in (almost) any model for any collider?

• Answer:

Use MadGraph/MadEvent 4!

Johan Alwall - MadGraph/MadEvent 4

MadGraph: What is it ?

- By T. Stelzer and W.F. Long [Phys. Com. 81 (1994) 357-371]
- Given a process, produces tree-level Feynman diagrams and a Fortran subroutine that computes the squared amplitudes using the HELAS helicity amplitude library Examples:
 - > pp > W+W-jjj, QCD = 3, QED = 2 (model: sm)
 - > e+e- > x1+x1- a a, QED = 4 (model: mssm)
- Reads the files particles.dat and interactions.dat for particle content and interaction vertices of the model
- Handles processes with up to 8 final states particles (and up to 10000 diagrams)

UVERSIT

MadEvent: What is it?

- By F. Maltoni and T. Stelzer [JHEP 0302:027, 2003]
- Multi-purpose event generator
- Uses the process information (matrix elements and phase space mappings) produced by MadGraph
- Efficient and general phase-space integration using Single-Diagram-Enhanced multichannel integration:
 - → Uses the squared diagrams as basis for multi-channel integration $f_i = \frac{|A_{tot}|^2}{\sum_i |A_i|^2} |A_i|^2$
 - ➤ Interference terms cannot introduce new poles
- Trivially parallelizable makes cluster use efficient

NIVERSITA

What's new in MG/ME 4?

- Web-oriented, modular software structure
- Three dedicated clusters (US, Belgium and Italy)
- New models
 - SUSY, 2HDM, Higgs EFT and (soon) UED
 - Framework for easy user model implementation
- Multiple/inclusive processes in single run
- Pythia (hadronization) and PGS (detector sim.) packages for complete event simulation on-line
- Matching with Pythia parton showers
- Beam polarization and (soon) beam strahlung (for ILC)

INIVERSITA.

How do I use MG/ME 4?

- 1. Open your browser
- 2. Go to one of our sites
- 3. Create a process
- 4. Generate events

Sounds easy? It is! Let me show you!

SLAC Example: 20-minute MG project

Effects of polarization on detection of dark matter production at the ILC through radiative photons (see Dreiner, Kittel, Langenfeld arXiv:0707.1642)

- Signal process: $e+e- > \chi_1^0 \chi_1^0 \gamma$
- Main background: $e+e- > v_1 v_1 y$

WIVERSI PAS. Ca.

WIVERSITAS.

Cross sections + plots

- MSSM point: $M(\chi_1^0) = 180 \text{ GeV}, M(\text{others}) > 250 \text{ GeV}$
- Only lightest neutralino attainable at 500 GeV LC

Ongoing developments

- FeynRules Mathematica based program to extract Feynman rules + MG files from Lagrangean (Duhr)
- Specification of complete decay chains – allows for high-multiplicity final states with full sping correlations (JA, Stelzer)
- Matrix element analysis techniques for arbitrary processes (Artoisenet, Mattelaer)
- Grid-executable MadEvent (Stelzer)
- More tools for e+e-: Energy scans, beam strahlung, jet matching with Pythia parton showers (JA)

Summary

- MadGraph/MadEvent 4 an integrated tool to generate any process (signal or background)
- User friendly: Reduces overhead and errors, allows you to focus on physics!
- Run on the Web or download (parts or whole code)
- Models: SM, MSSM, 2HDM, HEFT, (soon) UED
- Easy to implement new models
- Fast thanks to efficient and cluster-oriented generation
- Clusters found at:
 - UIUC: http://madgraph.hep.uiuc.edu/
 - UCL: http://madgraph.phys.ucl.ac.be/
 - Rome: http://madgraph.roma2.infn.it/

> 1500 registered users

Try it out – we are grateful for your feedback!

Johan Alwall - MadGraph/MadEvent 4

Backup slides

MG/ME structure

SLAC

NIVERSITAS.

MSSM

Hagiwara, Plehn, Rainwater, Stelzer + Alwall

- CP and R-parity conserving MSSM
- Sfermion mixing and Yukawa couplings for 3rd gen.
- Uses SUSY Les Houches input files independent of SUSY breaking scheme
- Detailed comparison of cross sections between SMadGraph, Omega and Amegic++ (hep-ph/0512260)
- Input files for the 10 SPS points available

General 2HDM de Vissher, Herquet

- Completely general 2HDM, with FCNC and CP violation
- New tree-level calculator (Herquet) with a web interface, TwoHiggsCalc, to generate the param_card for MadEvent
- Generic basis or Higgs basis, intensive use of recent basis invariance techniques (e.g. hep-ph/0504050)
- Tested in the SM & MSSM limits
- Sample files for various cases
- Simplified version without FCNC and off-diag. CKM elements

Higgs EFT Frederix

- Effective couplings of Higgs to gluons
 - Effective non-propagating tensor particle to allow Higgs couplings to more than 3 gluons
 - Several new HELAS subroutines
 - Works for scalar and pseudo-scalar neutral Higgs bosons

Implementing a new model

Ways to implement your own model in MG/ME:

- Modify existing model (e.g. changing couplings)
- User model framework (e.g. subspace of larger models)
 - New particles
 - New interactions
 - Expressions for the new couplings
 - Perl script generates all files needed by MadEvent!
- FeynRules
 - Work in progress - Directly from Lagrangean to implementation

SLAC

User model generation

de Vissher

particles.dat

	#Name #xxx	anti xxx	L_Name	Spin SFV	Linetype WSDC	Mass str	Width str	Color STO	Label str	Mode PDG	el code
	#MODEI	EXT	TENSION	1	_						
	tp	t	∶p~	F	S	TPMAS	SS TPW	ID T	TP	8	
	zp	2	zp	v	W	ZPMAS	SS ZPW	ID S	\mathbf{ZP}	32	
	# END										
interactions.dat											
ł	# U	SRVe	rtex								
	tp tp	a	GG	OCD							
	tpt	zp	GTPZP	ÕED							
	+ + + n	- <u>r</u>	CTPZP	OED							
	c cp	25	011.01	2HD							
couplings.f											
C*************************************											
c UserMode couplings											
C*****											
	<pre>GTPZP(1)=dcmplx(ee*param1,Zero)</pre>										
	GTPZP(2)=dcmplx(ee*param1,Zero)										

