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Silicon or Gaseous Central Tracking Detector?

same event

The detector we are planning to build is more akin to an
electronic bubble chamber than a LHC detector but with
true 3D volume pixels and exquisite calorimetry too.



Origins (and documentation)

TESLA CDR, 1996
U.S. Large Detector

TESLA TDR, 2001
— Starting point for LDC. B=4T CMS-like solenoid.

LDC Sketch Document, 2005

— Many open questions - only now starting to be addressed
— Emphasis on integrated detector design

LDC (Large Detector Concept) Detector Outline Document, 2006

— Snap-shot of status as of Summer 2006

ILC RDR — Detectors, 2007

See www.ilcldc.org for more info on LDC study



http://www.ilcldc.org/

LDC Design Philosophy

Physics needs should drive the detector design

Experience particularly from LEP, points towards:
— Particle-flow for complete event reconstruction

— A highly redundant and reliable tracking design which
emphasizes pattern recognition capabilities, low mass tracking,
“dE/dx for free”, and V' reconstruction (Kg, A, y conversion)

— A fine granularity calorimeter
— Ultra-hermetic

Cost 1s viewed as something to be justified by the
physics not as a hard limit in 1tself.

Accelerator and tracking system should be designed with
sufficient safety margin to operate reliably.



What kind of physics ?

* Processes central to the perceived physics program :
— f fbar at highest energy
— Zh
— Zhh
— sleptons
— charginos
e These will emphasize:

— Jet energy resolution (assumed to be done with particle flow)
aiming at 30%/VE for W/Z separation

— Hermeticity
— QGranularity
— Leptons, taus, b, ¢ tagging



Detector design requirements

Detector design should be able to do excellent physics in a cost effective way.
— both the physics we expect, and the new unexpected world that awaits

Very good vertexing and momentum measurements

c,=5 @ 10/(pPsin®?0) um o(1/py) =5 x10° GeV-!

Good electromagnetic energy measurement.

6/E ~ 10%/V E (GeV) ® 1%

The physics demands hermeticity and the physics reach will be significantly
greater with state-of-the art particle flow

— Close to 4r steradians. GE'et/Ejet ~ 30%/+ Ejet
— Bubble chamber like track reconstruction. !

(GeV)

— An integrated detector design.
— Calorimetry designed for resolving individual particles.



Di-jet mass distribution vs E. . resolution
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Detector Design Choices

Consensus that the tracker should be a true imaging type
tracker, almost certainly a TPC

and that the calorimetry and tracking have to work
together to do an excellent job of particle flow

Retain a general-purpose detector concept aiming at doing
physics in a new regime.

The ECAL probably Tungsten and quite a lot of Silicon.
HCAL.: analog and digital options under study.



LDCO0Sc Quadrant view ( B=4T)
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LDC concept started
from TESLA TDR

LDC Sketch
Document is an
excellent resource
for understanding
some of the
reasoning for where
we started from, and
the many still open
guestions



LDC Quadrant View

G000 —

Barrel Yoke

Magnet coil and

cryostat
- Endcap Yoke

_ 1800
18




Vertex Detector
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5-layer device. 5 layer coverage to |[cosB| < 0.9.

Pixels : many technologies ... see VTX
Review.

Inner layer at r=1.6 cm for B=4T




Main Tracker: TPC

Supplemented by stand-alone VTX tracking,
SIT + Forward tracking disks.

SET and ETC are track-cal linking options.

External tracking detector (SET)

3 10° volume

pixels.
200 points
per track.
Time Projection Chamber (TPC) S|ng|e_-p0| nt
Endcap Tracking resolution
Detector (ETC)
100 um r-¢,
2 mm r-z

ertex Detector Forward Tracking Disks (FTD)

|cos6| < 0.98
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Overall Tracking Performance

Track finding efficiency
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Tracking: Acceptance + Material

—
w
(O]

2
=
[0]

o
c
[=]

Q

)
w
_
(5]
==

)

©
L
Q

e
=
-
[

00 01 02 03 04 05 06 07 08
TAN(0)

10 0993 098 096 0.93 0.90 0.87 0.84 081 0.78 0.75 0.71
o)

Forward tracking disks should ensure good quality

track reconstruction to the edge of the TPC (ETD material only an issue
acceptance. for track-cal matching).

Does the VTX have enough layers if it is also
needed for reconstruction of soft tracks ?



Tracking: Momentum Resolution

FTD and FCH similar o TDR Mo 41T BT
Ne nor SE
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Compare with S1D (from SiD DoD)

WITH 2uM BEAM CONSTRAINT
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LDC does significantly
better job for tracks
with p; < 10 GeV.

Less material as
expected so less
multiple scattering,
photon conversions.

Are the material
estimates accurate ?



Calorimetry

8-fold way inside 4T solenoid




Calorimetry Technologies

ECAL
— Silicon-W (as tested in CALICE)

— 525 um Si, transverse cell-size
Smm*5Smm

— LDCO00Sc has 30 layers (0.4X,, per
layer) + 10 (1.2X,, per layer)

— LDCO1: 20%0.6X, +9*1.2X,
HCAL

— Analog : Scintillator + Stainless Steel.
e Tiles with Si-PM readout
* 40 layers, 4.5A, 5Smm Sc, 3cm*3cm.
— Digital : Gas + Stainless Steel.
« RPCs or GEMs, lcm*1cm




ECAL Performance

Evaluated with realistic geometry

1.0 1.5 2.0 V0. . 0.4 0.6 0.8
1.0NE (GeV) True cos(6) of particle

Newer barrel/endcap overlap
design looks as if this small
local broadening should be
cured (see V4 picture)



LCWSO07 iteration has
the overlap improved.
(and cable paths)




HCAL Performance

Scintillator Digital: Gas

0.4 0.6 0.8
1.0NT (GeV)

Geant 4.8.0 LCPhysicslist



Forward Region

See Karsten’s talk for
more details.

Designing the
ECAL/LCAL overlap
YOKEendcap well should be a priority
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Solenoid a la CMS
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Non-uniformities can be designed to be
small, and field will be mapped.

Carnporent: BMCD
0.011263279




Flux Return

e [nstrumented

 (does this affect field homogeneity / cost ?)



Particle-Flow Performance

Recent studies by M. Thomson show that correct treatment of tracks is very
important. Detector with a TPC is well placed to sort this out.

AVASES

Kinks See 5/9 phone meeting. Back-scatter



Particle-Flow Performance Summary

Studies so far M. Thomson
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Particle-flow — Detector directions ?
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LDCO00Sc Performance Summary

Detector design should be able to do excellent physics in a cost effective way.
— both the physics we expect, and the new unexpected world that awaits

Very good vertexing and momentum measurements.

6,=3.6 @ 8.5/(pPsin*?0) um o(1/p;) = 4 x10°5 GeV-!

Good electromagnetic energy measurement.

6/E ~ 10%/V E (GeV) ® 1%

The physics demands hermeticity and the physics reach will be significantly
greater with state-of-the art particle flow

— Close to 4 steradians. GEjet/ Ei = 23%/4 Eie (GeV)
— Bubble chamber like track reconstruction. (45 GeV jets, cheated
— An integrated detector design. track PATREC )

— Calorimetry designed for resolving individual particles.

Conclusion: Design goals look achievable. Lots of fun work

to do on really designing the detectors and understanding and
optimizing their combined performance.




Extra Slides



What 1s particle flow ?




Large or small detector ?

T anyana |5

Coil: B°R’L <¢,

The pairs background and

the VXD inner radius Particle flow: BR? > C 29

= minimum B Momentum resolution : BR? > c,



AE/E (%)

Comparison of tracker momentum resolution
with ECAL energy resolution vs Energy

Even for electrons, the tracker
should do better than the
calorimetry ...... (modulo
bremsstrahlung ....)

Energy Resolution in per cent

For charged pions, it is even
clearer that intrinsic calorimeter
charged pion resolution is not
the issue IF we have a highly
efficient tracker and can identify
which energy depositions in the
calorimeters are caused by
charged pions.

50 75 100 125 150 175 200 225 250
Energy (GeV)




Comparisons

 [f the same momentum resolution specs are required, then by
definition, the TPC-like tracking choice (which is also
complemented with VTX tracking and other specialized tracking
devices) implies that B Ry, ? is greater than for SiD

* Particle-flow performance may depend strongly on BRy ;2.
— LDCis 10 T m? (TESLA was 11 Tm?)
— GLDis 13 T m?
— LDC’, GLD’ likely to be around 12 T m?
— SiDDOD =8 T m?
— ALEPH =5 Tm?
* Currently, 1t looks like the dependence in the region we have been
investigating is much slower than this. (=> not dominated by
confusion ??). For neutrals not clear that B helps at all.
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