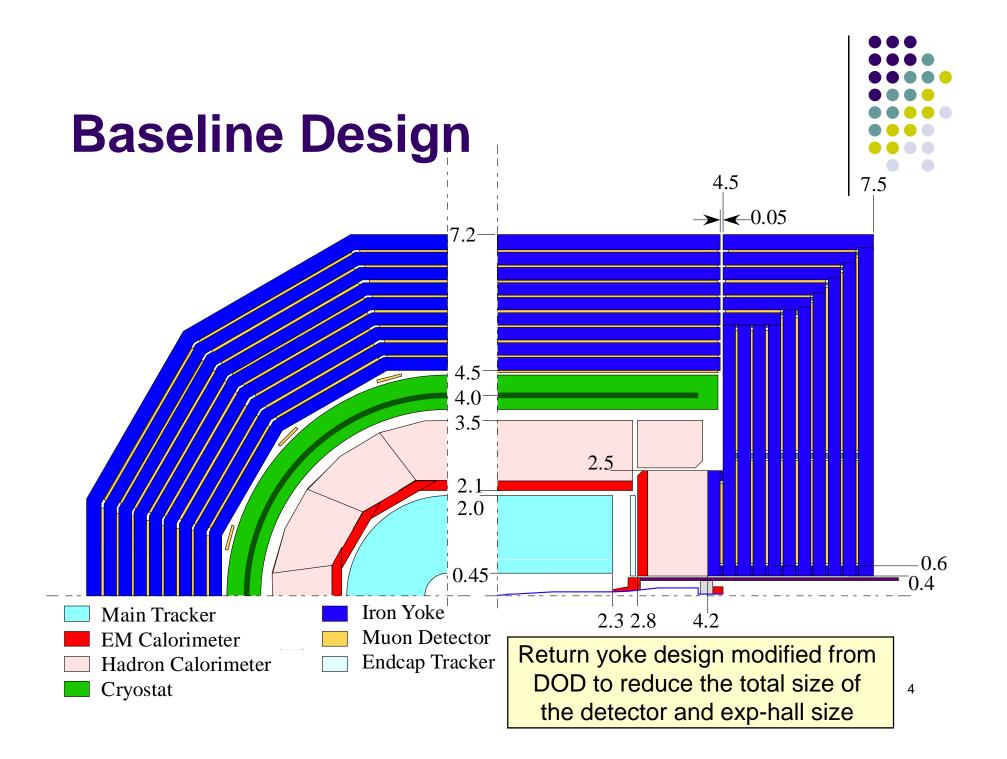
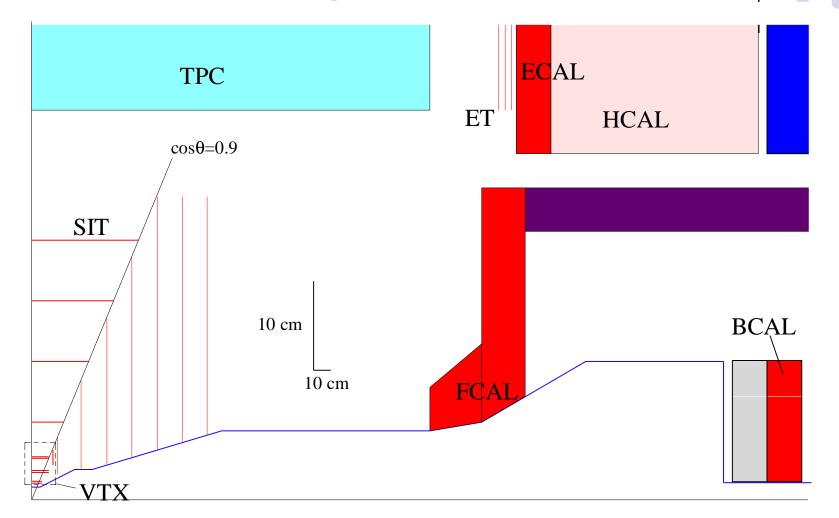
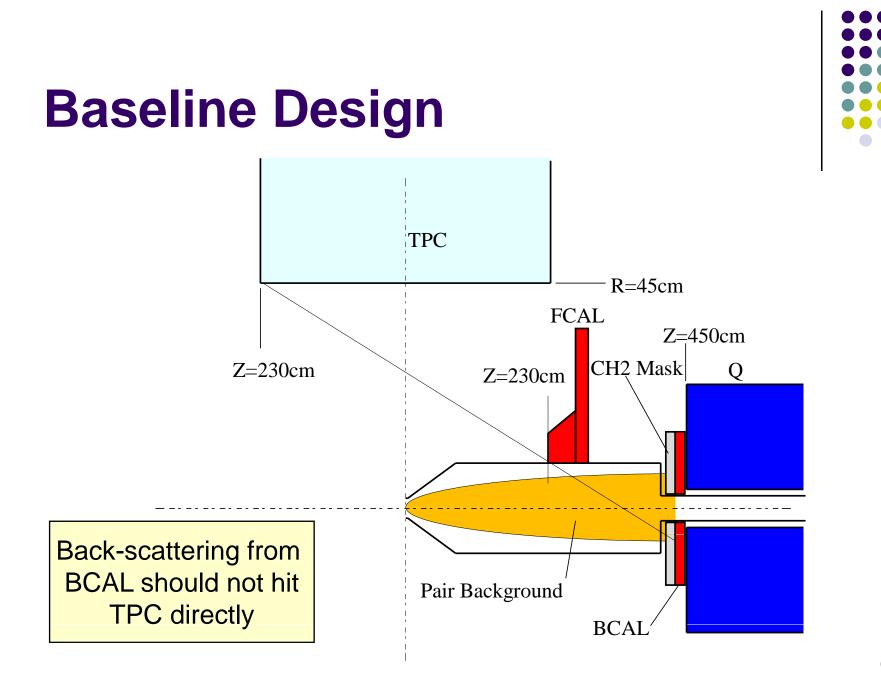
GLD and GLDc

Oct. 23, 2007 Y. Sugimoto KEK

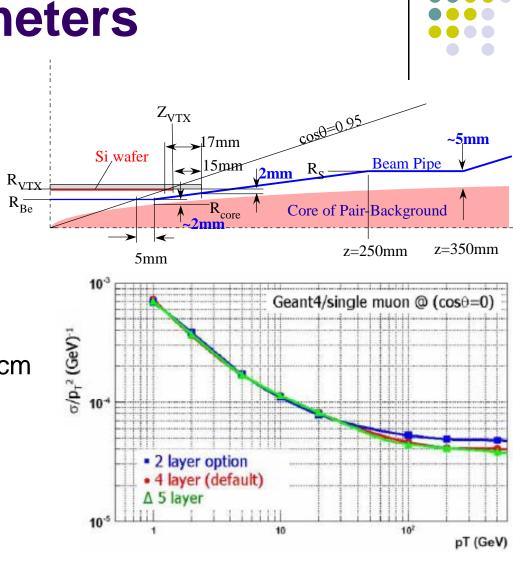


Part-I. GLD


GLD Baseline Design


- Large gaseous central tracker; TPC
- Large-radius, high-granularity ECAL with W/Scinti sandwich structure
- Large-radius, medium granularity, thick (~6λ) HCAL with Pb(Fe)/Scinti. sandwich structure
- Forward CAL (FCAL and BCAL) down to 5mrad
- Precision Si micro-vertex detector
- Si inner tracker (barrel and forward)
- Si endcap tracker (?)
- Si outer tracker between TPC and ECAL (??)
- Beam profile monitor in front of BCAL
- Muon detector interleaved with iron plates of the return yoke
- Moderate magnetic field of 3T

Baseline Design



Detector Parameters

- 6 layers (3 doublets)
- R=20(18) mm 50 mm (Strongly depends on machine parameters)
- Fine pixel CCD as the baseline design
- SIT
 - DSSD, 4 layers, R=9 30 cm
 - 7 discs in forward region, Z=15.5 - 101.5cm
 - Bunch ID capability
- TPC
 - R=45 cm 200 cm
 - Z=230 cm

7

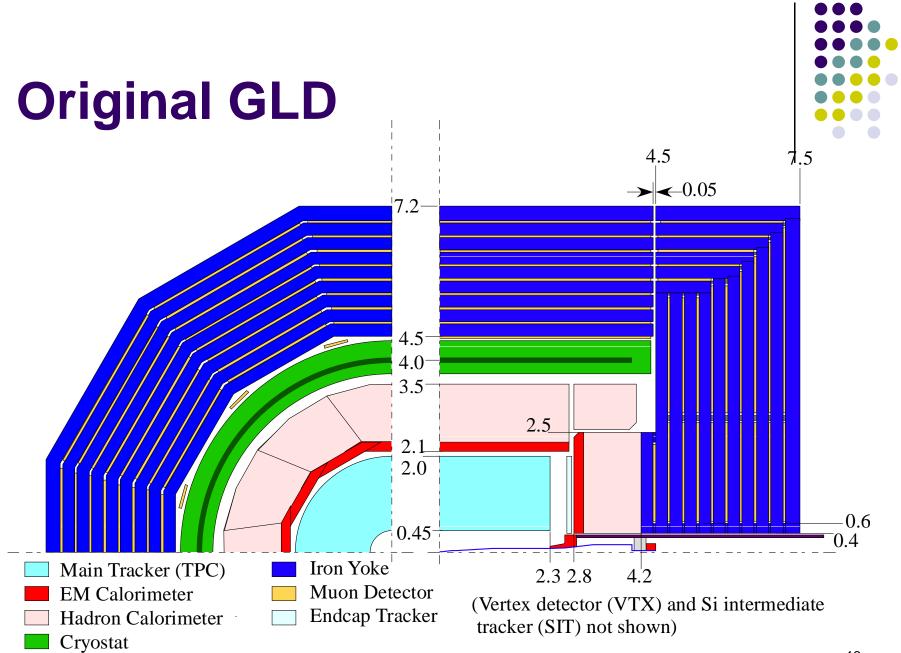
Detector Parameters

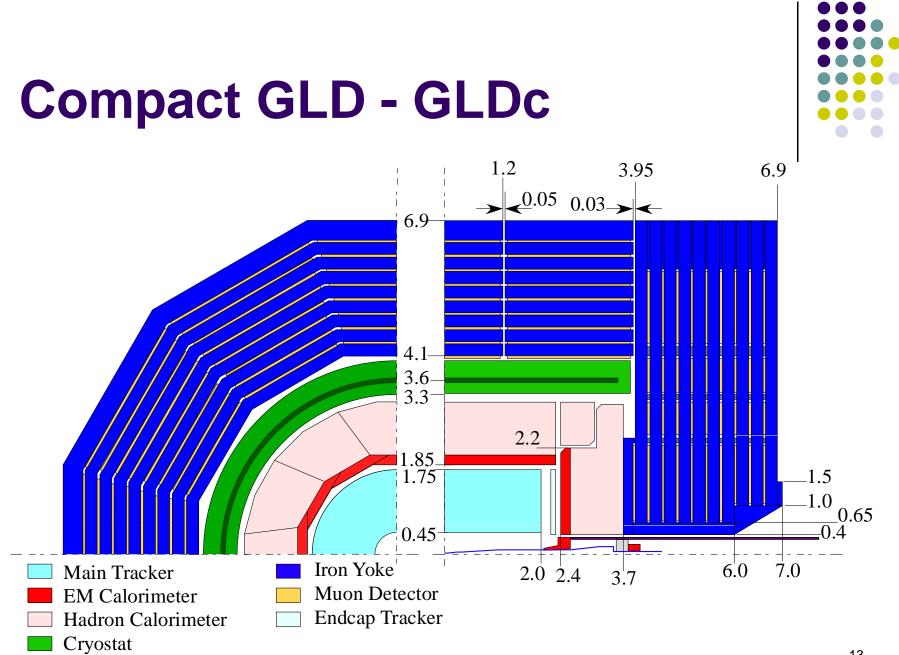
• ECAL

- W/Scintillator/Gap = 3/2/1 mm
- 33 layers
- 1cmx4cm scintillator strips, w.l.s. fiber+MPPC (SiPM) readout
- 2cmx2cm scintillator tile as an option
- 26 X₀, 1 λ
- HCAL
 - Pb(Fe)/Scinti./Gap = 20/5/1 mm
 - 46 layers
 - 1cmx20cm scintillator strips + 4cmx4cm scintillator tile, w.l.s. fiber+MPPC readout
 - 5.7 λ
- Muon detector
 - 8/10 layers in 4-cm gaps between 25-30 cm thick iron slabs of return yoke
 - X-Y scintillator strips with w.l.s.fiber+MPPC readout

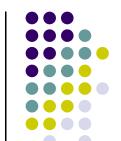
Detector Parameters

• PFA


	GLD	LDC	SiD
B (T)	3	4	5
R _{CAL} (m)	2.1	1.6	1.27
p _t ^{min} in CAL (GeV/c)	0.95	0.96	0.95
B R ² _{CAL} (Tm ²)	13.2	10.2	8.1
t _{HCAL} (λ)	5.7	4.6	4
E _{store} (GJ)	1.6	1.7	1.4
R _{Fe} (m)	7.2	6.0	6.45



Part-II. GLDc


Compact GLD Option – GLDc

- Motivation
 - GLD and LDC will write a common Lol
 - The detector design should have common parameters
 - Common parameters should be determined based on detailed simulation study, but it will take a time ~0.5y(?)
 - As a working assumption for the moment, a modified design of GLD with the central values for B and R_{CAL} between original GLD and LDC is made for the study on engineering issues (IRENG07 @SLAC)
 - B=(3+4)/2=3.5 T
 - R_{CAL}=(2.1+1.6)/2=1.85 m

Parameters (1)

			GLD	GLDc
Iron Yoke	oke Barrel Rout		7.2 m	6.9 m
		Rin	4.5 m	4.1 m
		Weight	6090 t	5080 t
	E.C.	Zin	4.2/4.5 m	3.7/3.95 m
		Zout	7.5 m	6.9 m
		Weight	3260 t / side	3050 t / side
Solenoid	B R Z		3 T	3.5 T
			4 m	3.6 m
			4 m	3.6 m
Weight E		~330 t	~300 t	
		1.6 GJ	1.7 GJ	
Stray field @Z=10m		70 G	120 G	

14

Parameters (2)

			GLD	GLDc
TPC	Rin Rout		0.45 m	0.45 m
			2.0 m	1.75 m
	Zmax		2.3 m	2.0 m
Barrel CAL	ECAL	Rin	2.1 m	1.85 m
		Rout	2.3 m	2.05 m
		BRin ²	13.2 Tm ²	12.0 Tm ²
	HCAL	Rout	3.5 m	3.15 m
		Thickness	1.2 m	1.1 m
	Weight		1750 t	1130 t

BRin²=10.2 for LDC and 8.1 for SiD

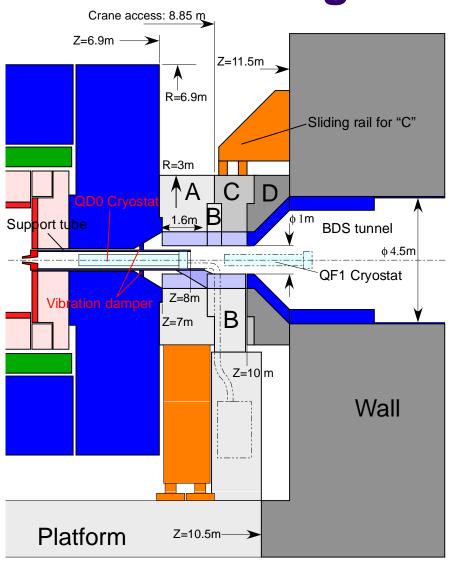
Parameters (3)

			GLD	GLDc
EC CAL	ECAL	Zmin	2.8 m	2.4 m
		Zmax	3.0 m	2.6 m
	HCAL	Zmax	4.2 m	3.7 m
		Thickness	1.2 m	1.1 m
	Weight		270 t / side	270 t / side
CAL	Total weight		2290 t	1670 t
Detector	Barrel yoke + solenoid		6.4 kt	5.4 kt
weight	Barrel total		8.2 kt	6.5 kt
	Endcap total		3.5 kt/side	3.3 kt/side
	Total weight		15 kt	13 kt

Assembly

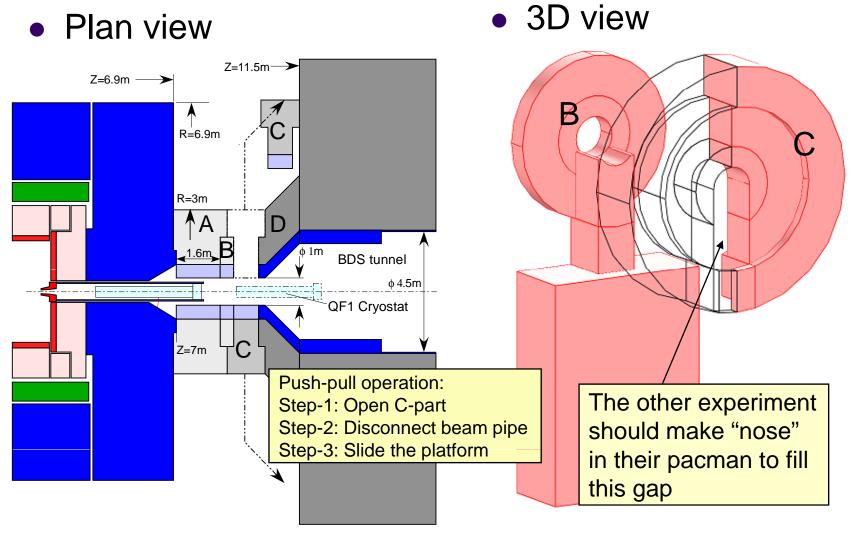
- GLD
 - Barrel part (Yoke+Sol.) > 6000 ton
 - For CMS style assembly (using 2000 ton crane to descend), it should be split into 5 rings and there will be many gaps
 - Large stray field
 - Difficulty in alignment of rings
 - In present design, GLD barrel yoke is split in R- and φ-direction into 24 pieces
 - 400-t cranes in the underground exp hall and surface assembly hall
- GLDc
 - Barrel part (Yoke+Sol.) < 6000 ton
 - Pure CMS style assembly can be done by splitting the barrel part into 3 rings and splitting each end cap part into two halves
 - 50~100-t crane underground, 2000-t crane for the shaft, and 80-t crane in the surface assembly hall

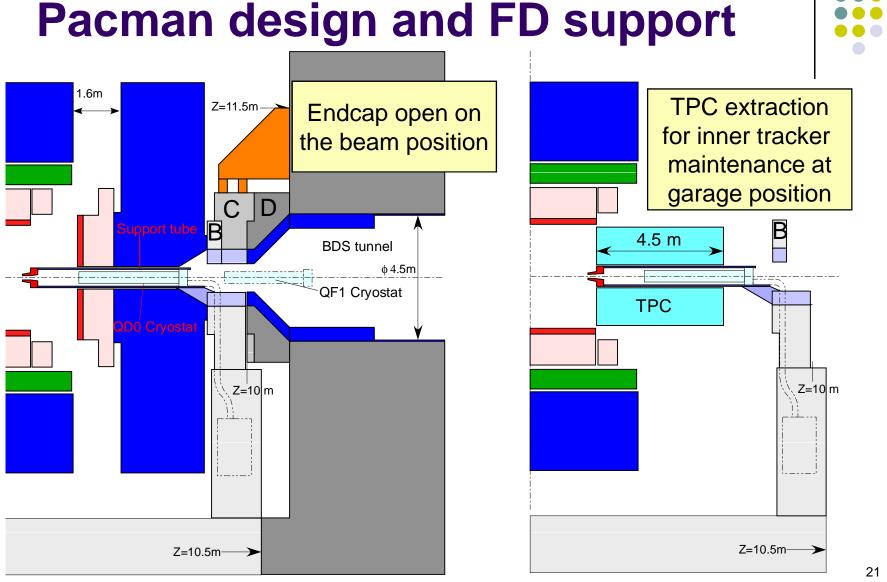
L* for GLDc


Component	Start	Length
End cap yoke	3.7 m	
BCAL	3.8 m ^(note-1)	0.2 m
BPM	4.0 m	0.2 m
QD0 cryostat	4.2 m	0.264 m
QD0 coil (L*)	4.464 m	

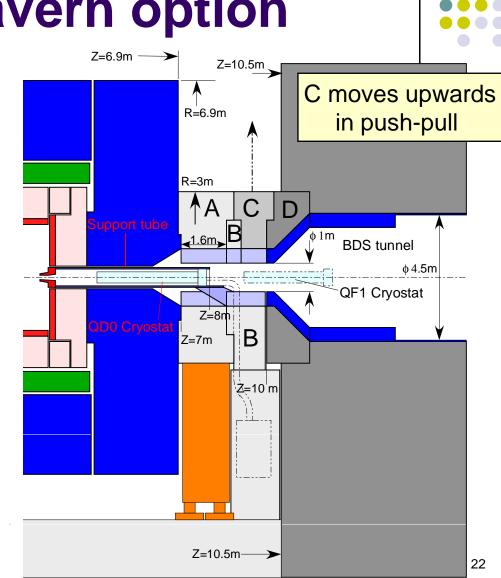
L* of ~4.5 m seems adequate

note-1:


By putting BCAL at $Z>Z_{endcap}$, strength of anti-DID can be reduced because R-component of solenoid B-field near the hole of end cap yoke can help guiding low energy pair-background into the beam exit hole


Pacman design and FD support

- A: slide sideway using air pad
- B: supported from the floor of platform
- QD0 cryostat is supported by the support tube and the support tube is supported from B
- We can put additional support for the support tube at the entrance of endcap yoke to damp the vibration, if necessary
- Upper part of B (~10 ton) must be removable by crane for installation and removal of the support tube
- C: slide along the wall (D) (common to both experiments) ~50 tonx2
- D: part of the wall
- Wall distance can be as small as 11.5 m from IP, if the crane can access to 2.65m from the wall
- Construction of C is done by a mobile crane (CMS style)
- Inner radius of pacman should be determined after design of gate valve etc. between QD0 and QF1 is fixed

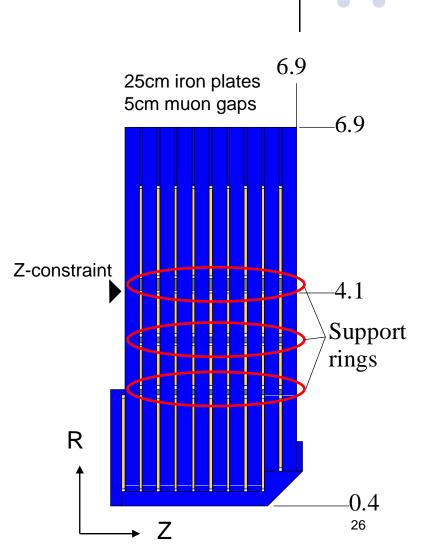

Pacman design and FD support

Still smaller cavern option

- Forget about crane access
- Forget about safety issues
- Design with cavern floor width as small as 21m can be drawn with the supporttube scheme
 - Pacman "C" moves upwards (using a small gantry crane fixed to the wall?) in push-pull operation
 - There is no way for a person to run away from one side of the detector to the other side (escape tunnel ?)

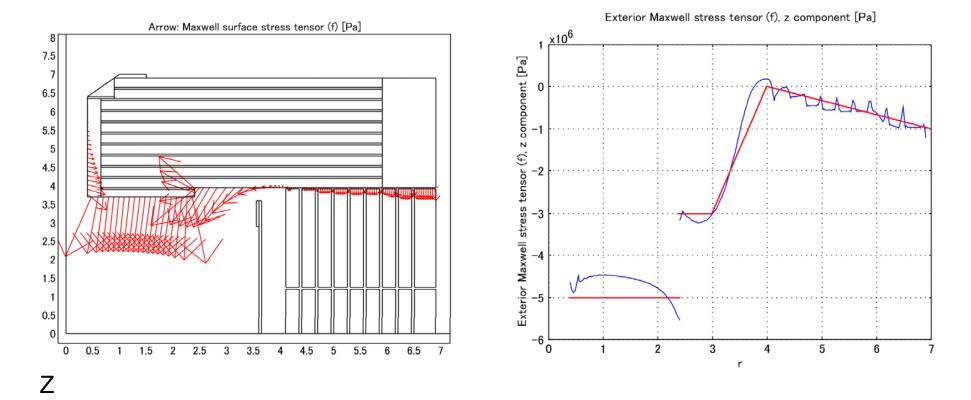
Other Engineering Issues

- Issues not studied yet
 - Detector cooling
 - Detector alignment
 - Luminosity (run period) needed for track-based alignment
 - Support scheme of beam pipe
 - Vibration analysis
 - Seismic issues
 - Services for detector solenoid including push-pull operation
 - Tolerable stray field from the viewpoint of safety and interference with near-by electric apparatus (E-hut)
 - Fire safety
- How to proceed these studies?
 - These issues will be covered by "MDI/Integration Working Group" of ILD


Design of GLDc Endcap

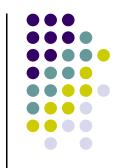
- GLD/GLDc endcap yoke is vertically split
- Installation and maintenance of Muon detectors are done from the splitting plane (X=0 plane) like Belle detector
- Support rings can be put between iron slabs to increase the rigidity of the endcap yoke
- Usually two halves may be connected tightly and split only for installation and maintenance of sub-detectors
- Endcap calorimeters can be arranged without dead space
- Because hadrons make shower in the endcap iron, small gap of muon detectors does not make inefficiency of muon identification

Endcap Deformation

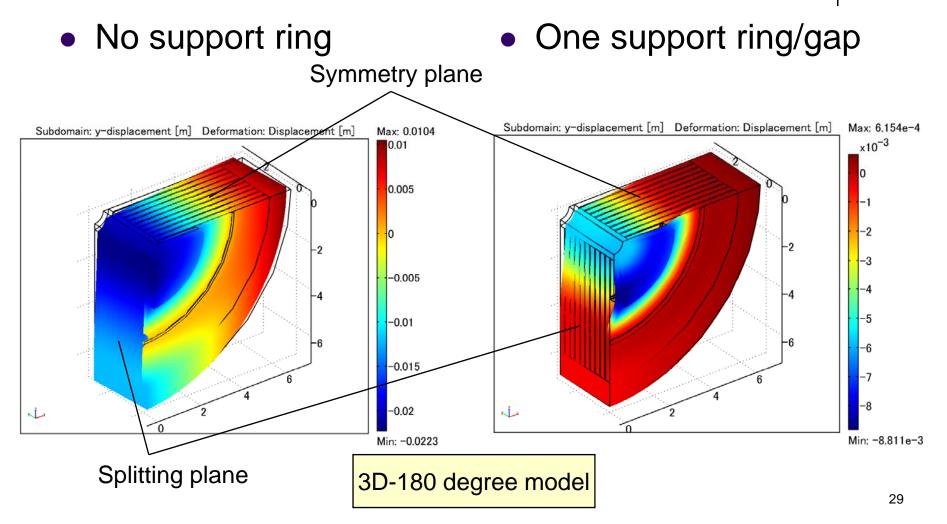

- Calculation by FEA method
 - Endcap is treated as a whole and surface force is calculated
 - The surface force at the front surface of the endcap is obtained as a function of R, and parameterized by a simple function
 - This simple function is used for the calculation of the deformation
 - Z-constraint only at R=4.1m (Inner radius of barrel yoke)
 - 3D model calculation

Endcap Deformation

• Magnetic Force

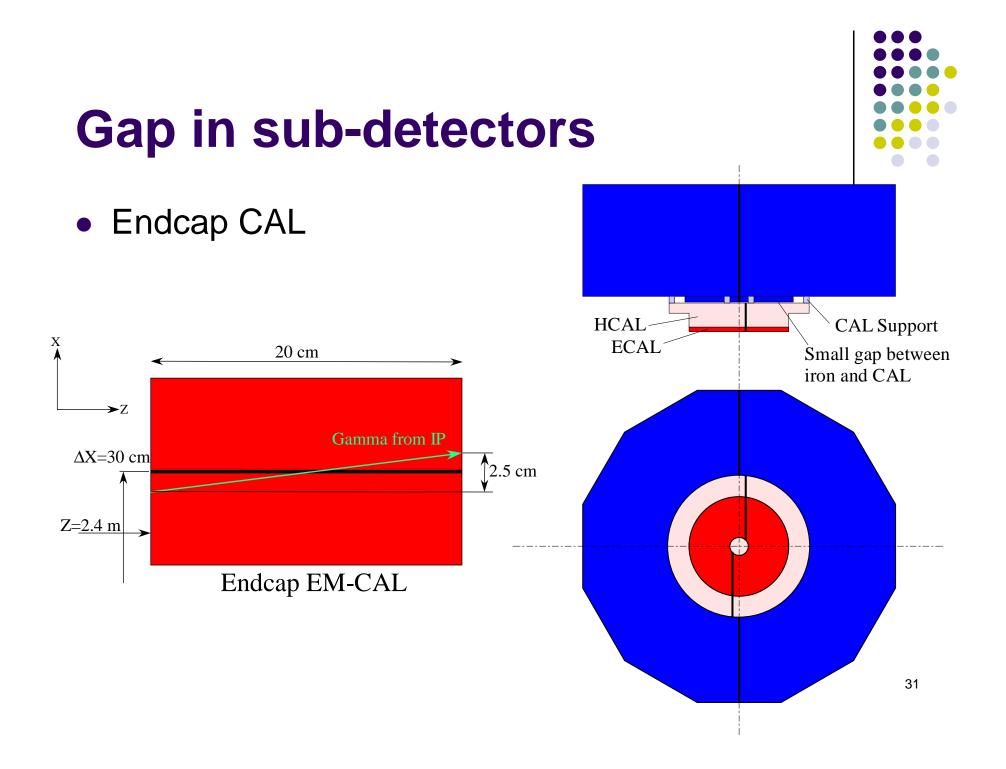


Endcap Deformation Results

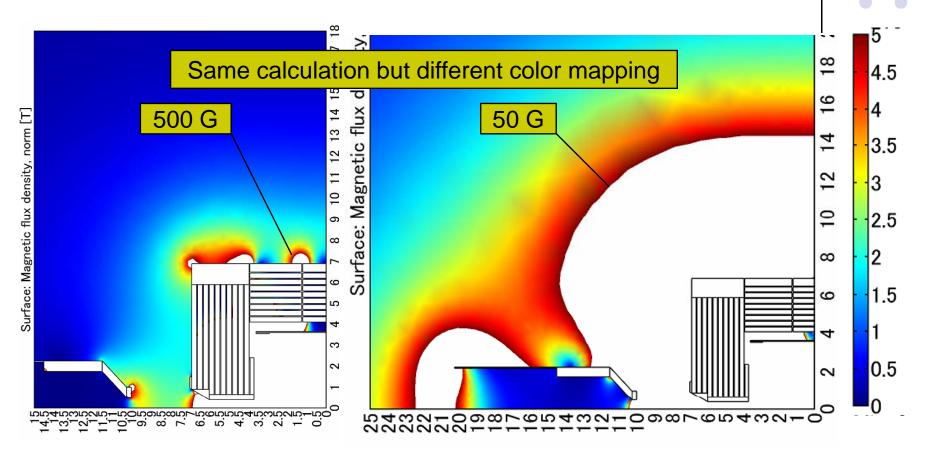

		ΔΖ		Z		
	Angle	Support ring	r=0.4 m	r=6.9 m		
	100		-21 mm	+11 mm	ф=0	
3D	180	No	-23 mm	-13 mm	ф=90	
3D	360	No	-12 mm	-3.9 mm		
3D	190	1 (r=4.1m)	-5.7 mm	-0.6 mm	φ=0	
30	180		-5.9 mm	-0.5 mm	φ=90	
3D	360	1	-4.6 mm	-0.2 mm		
20	180		-2.6 mm	+0.5 mm	φ=0	
3D		2 (r=2.3, 4.1m)	-2.7 mm	-0.7 mm	ф=90	
3D	360	2	-1.8 mm	-0.4 mm		
3D	100	3 (r=2.3, 3.2, 4.1m)	-1.7 mm	+0.3 mm	φ=0	
30	180		-1.8 mm	-0.7 mm	φ=90	
3D	360	3	-1.1 mm	-0.4 mm		
2D	360	No	-90 mm	0 mm - Fix	SiD-like: 23x(10cm Fe + 5cm gap)	

3D: 3-dimensional model2D: Axial symmetric 2-dimensional model

180: Splitting endcap360: Non-splitting endcsp



Endcap Deformation



Gap in sub-detectors

- Endcap calorimeters
 - Split along a plane which does not cross the IP (x=30cm plane, for example)
- Endcap muon detector
 - Split along the x=0 plane (same as iron yoke)
 - Tracks entering the muon-detector gap can be detected by TPC and calorimeters
 - If the particle is a pion, it creates hadronic shower in iron yoke, and would be detected by muon detector even if there is small gap

B field of GLDc

B₀=3.5 T B(10.5m<Z<20m) <50 G B(R>8m) <500 G

GLDc requirements for CFS

- Surface assembly hall
 - Same as CMS (?)
- Main shaft
 - 16 m in diameter or larger
- Underground cavern
 - 21 m floor (platform) width
 - Crane access to Z~9m
 - Cavern size is site-dependent
- Power consumption
 - Detector: xx kW
 - E-hut, sol. power supply, etc.: yy kW
 - Final doublet: → Ask WG-B
 - Platform movement: ??
 - Light, air-conditioning: → Ask WG-C

Guess of power consumption of detector			
	Detector	E-hut, etc.	
VTX	300 W	3 kW	
SIT			
TPC			
CAL	9 kW	70 kW	
Solenoid	-	200kW/20kW	
Total			

