Extraction-Line Energy Spectrometer

American Linear Collider Physics Workshop 2007 23 October 2007 FNAL

> Eric Torrence University of Oregon

- Secondary focus at detector plane
- Wigglers can be turned off for background measurements
- Long flight distance (~75m) to position-sensitive detector
- 30 cm separation on detector plane
- ~100 MeV / 100 microns need O(20 micron) accuracy

- 4 mRad bend (+/- 2 mRad) over ~75 meters
- 30 micron accuracy for 100 ppm (optical survey OK)
- Instrument with 100 micron quartz fibers, Multi-anode PMT
- Double detector improves wiggler alignment tolerance

Rad hard and robust, fast and simple readout, easy gain adjust, no RF pickup, modest cross-talk

• Check SR detection by Cherenkov in quartz fibers

T-475 program

- Compare efficiency (very small) to MC
- Check for other anomalous background sources
- Operational and design experience

Stage 2

- Refine design to be closer to XLS
- Demonstrate E measurement by this technique
- Demonstrate width measurement
- Compare to BPM-based measurement

Stage | T-475 Detector

8 100 micron fibers8 600 micron fibers(one cut at entry)I mm pitch

16 channel R6568 MAPMT Line driver for long analog cable

T474 BPM Spectrometer and T475 Synch Light Spectrometer Plan View

8-pole Mk-II Spear wiggler 16 kGauss field - 1.8 meters long +/- 0.75 mRad vertical stripe

Produces Ec ~ I MeV photons +/- 1.5 cm at detector plane

Wiggler before rotation

Wiggler in-situ

Detector Stand

Ē

- 64 x 140 micron (100 micron active) UV fibers (Polymicro)
- Spaced on 200 micron pitch w/ grooves engraved on Invar
- Fibers held in place with Indium foil "gasket"

CNC Goodness

(Photos courtesy J. Garman)

Hand Assembly

Finished Assembly

Fiber ends before trimming

60 fibers in place (4 background fibers)

PMT View

Delrin "cookie" for 64 channel PMT

Optical Survey

- Length scale determined by dimensions of Invar plate
- (Old) optical survey machine good to < 5 microns
- Sample rotation with respect to survey axis limits absolute length to 20 microns over 40 mm (0.5 mRad) or 500 ppm
- Similar constraints on detector axis vs. dipole plane

- Use Tektronix AFG3022 to simulate ILC bunch train
- Second AFG channel produces sync. sliding gate
- UV LED (395 nm), adjustable intensity from pulse amplitude
- VME readout by CAEN V792 ADC VME-PCI bridge

Test MAPMT gain and linearity in long ILC-like bunch train

- MA-PMT response measured in individual train pulse
- Clear loading seen as pulse amplitude increases
- Relatively stable after ~ 20 microseconds

What changes? Gain, Linearity, or both?

- Second T-475 Detector has seen first beam
- Detailed analysis just starting beam clearly seen

Oregon Teststand

- Other PMT and fiber tests also ongoing
- Lab tests to understand electronics issues starting
- Detailed bench measurements of gain and cross-talk

2008 run

- Fix any electronic/cross-talk problems
- Visible SR camera system?

Backup

- Fused silica (quartz) fibers, read out with 8x8 MaPMT
- Observe Cerenkov light from secondary electrons
- 100 micron pitch in core region (~2 cm 128 fibers)
- I mm pitch (600 micron fibers) else (~26 cm 256 fibers)

More signal/channel, lower channel count ~1600 fibers, 24 PMTs per beam 26 cm detector can see to 50% of Enom

