Extraction-Line

Energy Spectrometer

American Linear Collider Physics Workshop 2007 23 October 2007

FNAL

Eric Torrence
University of Oregon

Extraction Line Spectrometer

- Secondary focus at detector plane
- Wigglers can be turned off for background measurements
- Long flight distance ($\sim 75 \mathrm{~m}$) to position-sensitive detector
- 30 cm separation on detector plane
- $\sim 100 \mathrm{MeV} / 100$ microns - need $\mathrm{O}(20$ micron $)$ accuracy

Detector plane

Quartz
Quartz
Fibers
$150 \mathrm{MeV} / 100 \mathrm{um}$ for 250 GeV beam

30 cm

- 4 mRad bend (+/- 2 mRad) over ~ 75 meters
- 30 micron accuracy for 100 ppm (optical survey OK)
- Instrument with 100 micron quartz fibers, Multi-anode PMT
- Double detector improves wiggler alignment tolerance

Rad hard and robust, fast and simple readout, easy gain adjust, no RF pickup, modest cross-talk

T-475 program

Stage I

- Check SR detection by Cherenkov in quartz fibers
- Compare efficiency (very small) to MC
- Check for other anomalous background sources
- Operational and design experience

Stage 2

- Refine design to be closer to XLS
- Demonstrate E measurement by this technique
- Demonstrate width measurement
- Compare to BPM-based measurement

Stage I T-475 Detector

8100 micron fibers 8600 micron fibers (one cut at entry) I mm pitch

I6 channel R6568 MAPMT

 Line driver for long analog cable

T474 BPM Spectrometer and T475 Synch Light Spectrometer Plan View

Mk-II Spear wiggler

8-pole Mk-II Spear wiggler
16 kGauss field - 1.8 meters long
+/- 0.75 mRad vertical stripe
Produces Ec ~ I MeV photons
$+/-1.5 \mathrm{~cm}$ at detector plane

SR Exit
Window

Detector Stand

PMT Shelf

2nd prototype detector

SR Fan (one side only)

- 64×140 micron (100 micron active) UV fibers (Polymicro)
- Spaced on 200 micron pitch w/ grooves engraved on Invar
- Fibers held in place with Indium foil "gasket"

Construction Photos

Fiber laying stand

Delrin "cookie" for 64 channel PMT

Optical Survey

- Length scale determined by dimensions of Invar plate
- (Old) optical survey machine good to <5 microns
- Sample rotation with respect to survey axis limits absolute length to 20 microns over 40 mm (0.5 mRad) or 500 ppm
- Similar constraints on detector axis vs. dipole plane

- Reversing chicane moves beam from Left to Right
- Good "signal" strength
- Low/zero backgrounds
- Weird artifacts

- Crosstalk?
- Channel mapping?
- PMT Saturation?

Working to understand this with bench measurements

July Run Data

"Dirty" conditions PR2 in - spraying tunnel with junk

Unconnected PMT pixels show large backgrounds Direct PMT hits! (or huge cross-talk at PMT)

- Use Tektronix AFG3022 to simulate ILC bunch train
- Second AFG channel produces sync. sliding gate
- UV LED (395 nm), adjustable intensity from pulse amplitude
- VME readout by CAENV792 ADC -VME-PCI bridge

Test MAPMT gain and linearity in long ILC-like bunch train

PMT Loading

Graph

- MA-PMT response measured in individual train pulse
- Clear loading seen as pulse amplitude increases
- Relatively stable after ~ 20 microseconds

What changes? Gain, Linearity, or both?

PMT Linearity

Clear "knee" independent of PMT voltage, harder cutoff

Summary

July ESA run

- Second T-475 Detector has seen first beam
- Detailed analysis just starting - beam clearly seen

Oregon Teststand

- Other PMT and fiber tests also ongoing
- Lab tests to understand electronics issues starting
- Detailed bench measurements of gain and cross-talk

2008 run

- Fix any electronic/cross-talk problems
- Visible SR camera system?

Backup

Detector Module

- Fused silica (quartz) fibers, read out with 8×8 MaPMT
- Observe Cerenkov light from secondary electrons
- 100 micron pitch in core region ($\sim 2 \mathrm{~cm}-128$ fibers)
- I mm pitch (600 micron fibers) else ($\sim 26 \mathrm{~cm}-256$ fibers)

More signal/channel, lower channel count
~1600 fibers, 24 PMTs per beam
26 cm detector can see to 50% of Enom

Real Data

Ch I5 is cut (background monitor) Signal/Noise ~ I
Large/Small is not 6^{2}
Very limited ability to understand data

SLAC U.S GOUT, PROP

Wiggler Off

Wiggler On

